
www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988 141

A Taxonomy of Scheduling in General-Purpose
Distributed Computing Systems

THOMAS L. CASAVANT, MEMBER, IEEE, AND JON G. KUHL, MEMBER, IEEE

Abstract-One measure of usefulness of a general-purpose distrib-
uted computing system is the system’s ability to provide a level of per-
formance commensurate to the degree of multiplicity of resources pres-
ent in the system. Many different approaches and metrics of
performance have been proposed in an attempt to achieve this goal in
existing systems. In addition, analogous problem formulations exist in
other fields such as control theory, operations research, and produc-
tion management. However, due to the wide variety of approaches to
this problem, it is difficult to meaningfully compare different systems
since there is no uniform means for qualitatively or quantitatively eval-
uating them. It is difficult to successfully build upon existing work or
identify areas worthy of additional effort without some understanding
of the relationships between past efforts. In this paper, a taxonomy of
approaches to the resource management problem is presented in an
attempt to provide a common terminology and classification mecha-
nism necessary in addressing this problem. The taxonomy, while pre-
sented and discussed in terms of distributed scheduling, is also appli-
cable to most types of resource management. As an illustration of the
usefulness of the taxonomy an annotated bibliography is given which
classifies a large number of distributed scheduling approaches accord-
ing to the taxonomy.

Index Terms-Distributed operating systems, distributed resource
management, general-purpose distributed computing systems, sched-
uling, task allocation, taxonomy.

I. INTRODUCTION

T HE study of distributed computing has grown to in-
clude a large range of applications [16], [17], [31],

[32], [37], [54], [%I. However, at the core of all the ef-
forts to exploit the potential power of distributed com-
putation are issues related to the management and allo-
cation of system resources relative to the computational
load of the system. This is particularly true of attempts to
construct large general-purpose multiprocessors [3], [8],
WI, P61, WI-WI, 1501, [611, W71.

The notion that a loosely coupled collection of proces-
sors could function as a more powerful general-purpose
computing facility has existed for quite some time. A large
body of work has focused on the problem of managing the
resources of a system in such a way as to effectively ex-
ploit this power. The result of this effort has been the pro-

Manuscript received August 30, 1985.
T. L. Casavant was with the Department of Electrical and Computer

Engineering, University of Iowa, Iowa City, IA 52242. He is now with the
School of Electrical Engineering, Purdue University, West Lafayette, IN
47907.

J. G. Kuhl is with the Department of Electrical and Computer Engi-
neering, University of Iowa, Iowa City, IA 52242.

IEEE Log Number 8718386.

posal of a variety of widely differing techniques and meth-
odologies for distributed resource management. Along
with these competing proposals has come the inevitable
proliferation of inconsistent and even contradictory ter-
minology, as well as a number of slightly differing prob-
lem formulations, assumptions, etc. Thus, it is difficult to
analyze the relative merits of alternative schemes in a
meaningful fashion. It is also difficult to focus common
effort on approaches and areas of study which seem most
likely to prove fruitful.

This paper attempts to tie the area of distributed sched-
uling together under a common, uniform set of terminol-
ogy. In addition, a taxonomy is given which allows the
classification of distributed scheduling algorithms accord-
ing to a reasonably small set of salient features. This al-
lows a convenient means of quickly describing the central
aspects of a particular approach, as well as a basis for
comparison of commonly classified schemes.

Earlier work has attempted to classify certain aspects
of the scheduling problem. In [9], Casey gives the basis
of a hierarchical categorization. The taxonomy presented
here agrees with the nature of Casey’s categorization.
However, a large number of additional fundamental dis-
tinguishing features are included which differentiate be-
tween existing approaches. Hence, the taxonomy given
here provides a more detailed and complete look at the
basic issues addressed in that work. Such detail is deemed
necessary to allow meaningful comparisons of different
approaches. In contrast to the taxonomy of Casey, Wang
[65] provides a taxonomy of load-sharing schemes.
Wang’s taxonomy succinctly describes the range of ap-
proaches to the load-sharing problem. The categorization
presented describes solutions as being either source ini-
tiative or server initiative. In addition, solutions are char-
acterized along a continuous range according to the de-
gree of information dependency involved. The taxonomy
presented here takes a much broader view of the distrib-
uted scheduling problem in which load-sharing is only one
of several possible basic strategies available to a system
designer. Thus the classifications discussed by Wang de-
scribe only a narrow category within the taxonomy.

Among existing taxonomies, one can find examples of
flat and hierarchical classification schemes. The taxon-
omy proposed here is a hybrid of these two-hierarchical
as long as possible in order to reduce the total number of
classes, and flat when the descriptors of the system may
be chosen in an arbitrary order. The levels in the hier-

0098-5589/88/0200-0141$01.00 0 1988 IEEE

www.manaraa.com

142 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

archy have been chosen in order to keep the description
of the taxonomy itself small, and do not necessarily re-
flect any ordering of importance among characteristics. In
other words, the descriptors comprising the taxonomy do
not attempt to hierarchically order the characteristics of
scheduling systems from more to less general. This point
should be stressed especially with respect to the position-
ing of the flat portion of the taxonomy near the bottom of
the hierarchy. For example, load balancing is a charac-
teristic which pervades a large number of distributed
scheduling, systems, yet for the sake of reducing the size
of the description of the taxonomy, it has been placed in
the flat portion of the taxonomy and, for the sake of brev-
ity, the flat portion has been placed near the bottom of the
hierarchy.

The remainder of the paper is organized as follows. In
Section II, the scheduling problem is defined as it applies
to distributed resource management. In addition, a tax-
onomy is presented which serves to allow qualitative de-
scription and comparison of distributed scheduling sys-
tems. Section III will present examples from the literature
to demonstrate the use of the taxonomy in qualitatively
describing and comparing existing systems. Section IV
presents a discussion of issues raised by the taxonomy and
also suggests areas in need of additional work.

In addition to the work discussed in the text of the pa-
per, an extensive annotated bibliography is given in an
Appendix. This Appendix further demonstrates the effec-
t iveness of the taxonomy in allowing standardized de-
scription of existing systems.

II. THE SCHEDULING PROBLEM AND DESCRIBING ITS
SOLUTIONS

The general scheduling problem has been described a
number of times and in a number of different ways in the
literature [121, [22], [63] and is usually a restatement of
the classical notions of job sequencing [131 in the study
of production management [7]. For the purposes of dis-
tributed process scheduling, we take a broader view of the
scheduling function as a resource management resource.
This management resource is basically a mechanism or
policy used to efficiently and effectively manage the ac-
cess to and use of a resource by its various consumers.
Hence, we may view every instance of the scheduling
problem as consisting of three main components.

1) Consumer(s).
2) Resource(s).
3) Policy.

Like other management or control problems, understand-
ing the functioning of a scheduler may best be done by
observing the effect it has on its environment. In this case,
one can observe the behavior of the scheduler in terms of
how the policy affects the resources and consumers. Note
that although there is only one policy, the scheduler may
be viewed in terms of how it affects either or both re-
sources and consumers. This relationship between the
scheduler, policies, consumers, and resources is shown in
Fig. 1.

I I I L
Fig. 1. Scheduling system.

In light of this description of the scheduling problem,
there are two properties which must be considered in eval-
uating any scheduling system 1) the satisfaction of the
consumers with how well the scheduler manages the re-
source in question (performance), and 2) the satisfaction
of the consumers in terms of how difficult or costly it is
to access the management resource itself (efficiency). In
other words, the consumers want to be able to quickly and
efficiently access the actual resource in question, but do
not desire to be hindered by overhead problems associated
with using the management function itself.

One by-product of this statement of the general sched-
uling problem is the unification of two terms in common
use in the literature. There is often an implicit distinction
between the terms scheduling and aZZocation. However,
it can be argued that these are merely alternative formu-
lations of the same problem, with allocation posed in
terms of resource allocution (from the resources’ point of
view), and scheduling viewed from the consumer’s point
of view. In this sense, allocation and scheduling are
merely two terms describing the same general mecha-
nism, but described from different viewpoints.

A. The Classijication Scheme
The usefulness of the four-category taxonomy of com-

puter architecture presented by Flynn [20] has been well
demonstrated by the ability to compare systems through
their relation to that taxonomy. The goal of the taxonomy
given here is to provide a commonly accepted set of terms
and to provide a mechanism to allow comparison of past
work in the area of distributed scheduling in a qualitative
way. In addition, it is hoped that the categories and their
relationships to each other have been chosen carefully
enough to indicate areas in need of future work as well as
to help classify future work.

The taxonomy will be kept as small as possible by pro-
ceeding in a hierarchical fashion for as long as possible,
but some choices of characteristics may be made indepen-
dent of previous design choices, and thus will be specified
as a set of descriptors from which a subset may be chosen.
The taxonomy, while discussed and presented in terms of
distributed process scheduling, is applicable to a larger
set of resources. In fact, the taxonomy could usefully be
employed to classify any set of resource management sys-
tems. However, we will focus our attention on the area
of process management since it is in this area which we
hope to derive relationships useful in determining poten-
tial areas for future work.

1) Hierarchical Classification: The structure of the hi-
erarchical portion of the taxonomy is shown in Fig. 2. A
discussion of the hierarchical portion then follows.

www.manaraa.com

CASAVANT AND KUHL: TAXONOMY OF SCHEDULING IN DISTRIBUTED COMPUTING SYSTEMS 143

local global

dyoamlc

opmal sub-optnnl physically phyxnlly
i ,./‘?: distnbxced

zwh
theory

math.
Pwx

queuing
theory

Fig. 2. Task scheduling characteristics.

a) Local Versus Global: At the highest level, we
may distinguish between local and global scheduling. Lo-
cal scheduling is involved with the assignment of pro-
cesses to the time-slices of a single processor. Since the
area of scheduling on single-processor systems [121, [62]
as well as the area of sequencing or job-shop scheduling
[131, [181 has been actively studied for a number of years,
this taxonomy will focus on global scheduling. Global
scheduling is the problem of deciding where to execute a
process, and the job of local scheduling is left to the op-
erating system of the processor to which the process is
ultimately allocated. This allows the processors in a mul-
t iprocessor increased autonomy while reducing the re-
sponsibility (and consequently overhead) of the global
scheduling mechanism. Note that this does not imply that
global scheduling must be done by a single central au-
thority, but rather, we view the problems of local and
global scheduling as separate issues, and (at least logi-
cally) separate mechanisms are at work solving each.

b) Static Versus Dynamic: The next level in the hi-
erarchy (beneath global scheduling) is a choice between
static and dynamic scheduling. This choice indicates the
time at which the scheduling or assignment decisions are
made.

In the case of static scheduling, information regarding
the total mix of processes in the system as well as all the
independent subtasks involved in a job or task force [26],
[44] is assumed to be available by the time the program
object modules are linked into load modules. Hence, each
executable image in a system has a static assignment to a
particular processor, and each time that process image is
submitted for execution, it is assigned to that processor.
A more relaxed definition of static scheduling may in-
clude algorithms that schedule task forces for a particular
hardware configuration. Over a period of time, the topol-
ogy of the system may change, but characteristics de-
scribing the task force remain the same. Hence, the
scheduler may generate a new assignment of processes to

processors to serve as the schedule until the topology
changes again.

Note here that the term static scheduling as used in this
paper has the same meaning as deterministic scheduling
in [22] and tusk scheduling in [56]. These alternative
terms will not be used, however, in an attempt to develop
a consistent set of terms and taxonomy.

c) Optimal Versus Suboptimal: In the case that all
information regarding the state of the system as well as
the resource needs of a process are known, an optimal
assignment can be made based on some criterion function
[5], [141, [21], [35], [40], [48]. Examples of optimization
measures are minimizing total process completion time,
maximizing utilization of resources in the system, or
maximizing system throughput. In the event that these
problems are computationally infeasible, suboptimal so-
lutions may be tried [2], [34], [47]. Within the realm of
suboptimal solutions to the scheduling problem, we may
think of two general categories.

d) Approximate Versus Heuristic: The first is to use
the same formal computational model for the algorithm,
but instead of searching the entire solution space for an
optimal solution, we are satisfied when we find a “good”
one. We will categorize these solutions as suboptimal-up-
proximate. The assumption that a good solution can be
recognized may not be so insignificant, but in the cases
where a metric is available for evaluating a solution, this
technique can be used to decrease the time taken to find
an acceptable solution (schedule). The factors which de-
termine whether this approach is worthy of pursuit in-
clude:

1) Availability of a function to evaluate a solution.
2) The time required to evaluate a solution.
3) The ability to judge according to some metric the

value of an optimal solution.
4) Availability of a mechanism for intelligently prun-

ing the solution space.
The second branch beneath the suboptimal category is

www.manaraa.com

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 2, FEBRUARY 1988

labeled heuristic [15], [30], [66]. This branch represents
the category of static algorithms which make the most re-
alistic assumptions about a priori knowledge concerning
process and system loading characteristics. It also repre-
sents the solutions to the static scheduling problem which
require the most reasonable amount of time and other sys-
tem resources to perform their function. The most distin-
guishing feature of heuristic schedulers is that they make
use of special parameters which affect the system in in-
direct ways. Often, the parameter being monitored is cor-
related to system performance in an indirect instead of a
direct way, and this alternate parameter is much simpler
to monitor or calculate. For example, clustering groups
of processes which communicate heavily on the same pro-
cessor and physically separating processes which would
benefit from parallelism [52] directly decreases the over-
head involved in passing information between processors,
while reducing the interference among processes which
may run without synchronization with one another. This
result has an impact on the overall service that users re-
ceive, but cannot be directly related (in a quantitative way)
to system performance as the user sees it. Hence, our in-
tuition, if nothing else, leads us to believe that taking the
aforementioned actions when possible will improve sys-
tem performance. However, we may not be able to prove
that a first-order relationship between the mechanism em-
ployed and the desired result exists.

e) Optimal and Suboptimal Approximate Tech-
niques: Regardless of whether a static solution is optimal
or suboptimal-approximate, there are four basic catego-
ries of task allocation algorithms which can be used to
arrive at an assignment of processes to processors.

1) Solution space enumeration and search [48].
2) Graph theoretic [4], [57], [58].
3) Mathematical programming [5], [141, [21], [35],

[401.
4) Queueing theoretic [lo], [28], [29].

f) Dynamic Solutions: In the dynamic scheduling
problem, the more realistic assumption is made that very
little a priori knowledge is available about the resource
needs of a process. It is also unknown in what environ-
ment the process will execute during its lifetime. In the
static case, a decision is made for a process image before
it is ever executed, while in the dynamic case no decision
is made until a process begins its life in the dynamic en-
vironment of the system. Since it is the responsibility of
the running system to decide where a process is to exe-
cute, it is only natural to next ask where the decision itself
is to be made.

g) Distributed Versus Nondistributed: The next is-
sue (beneath dynamic solutions) involves whether the re-
sponsibility for the task of global dynamic scheduling
should physically reside in a single processor [44] (phys-
ically nondistributed) or whether the work involved in
making decisions should be physically distributed among
the processors [171. Here the concern is with the logical
authority of the decision-making process.

h) Cooperative Versus Noncooperative: Within the
realm of distributed dynamic global scheduling, we may

also distinguish between those mechanisms which involve
cooperation between the distributed components (coop-
erative) and those in which the individual processors make
decisions independent of the actions of the other proces-
sors (noncooperative). The question here is one of the de-
gree of autonomy which each processor has in determin-
ing how its own resources should be used. In the
noncooperative case individual processors act alone as au-
tonomous entities and arrive at decisions regarding the use
of their resources independent of the effect of their deci-
sion on the rest of the system. In the cooperative case each
processor has the responsibility to carry out its own por-
tion of the scheduling task, but all processors are working
toward a common system-wide goal. In other words, each
processor’s local operating system is concerned with
making decisions in concert with the other processors in
the system in order to achieve some global goal, instead
of making decisions based on the way in which the deci-
sion will affect local performance only. As in the static
case, the taxonomy tree has reached a point where we
may consider optimal, suboptimal-approximate, and sub-
optimal-heuristic solutions. The same discussion as was
presented for the static case applies here as well.

In addition to the hierarchical portion of the taxonomy
already discussed, there are a number of other distin-
guishing characteristics which scheduling systems may
have. The following sections will deal with characteris-
tics which do not fit uniquely under any particular branch
of the tree-structured taxonomy given thus far, but are
still important in the way that they describe the behavior
of a scheduler. In other words, the following could be
branches beneath several of the leaves shown in Fig. 2
and in the interest of clarity are not repeated under each
leaf, but are presented here as a flat extension to the
scheme presented thus far. It should be noted that these
attributes represent a set of characteristics, and any par-
ticular scheduling subsystem may possess some subset of
this set. Finally, the placement of these characteristics
near the bottom of the tree is not intended to be an indi-
cation of their relative importance or any other relation to
other categories of the hierarchical portion. Their position
was determined primarily to reduce the size of the de-
scription of the taxonomy.

2) Flat Classijcation Characteristics:
a) Adaptive Versus Nonadaptive: An adaptive solu-

tion to the scheduling problem is one in which the algo-
rithms and parameters used to implement the scheduling
policy change dynamically according to the previous and
current behavior of the system in response to previous de-
cisions made by the scheduling system. An example of
such an adaptive scheduler would be one which takes
many parameters into consideration in making its deci-
sions [52]. In response to the behavior of the system, the
scheduler may start to ignore one parameter or reduce the
importance of that parameter if it believes that parameter
is either providing information which is inconsistent with
the rest of the inputs or is not providing any information
regarding the change in system state in relation to the val-
ues of the other parameters being observed. A second ex-

www.manaraa.com

CASAVANT AND KUHL: TAXONOMY OF SCHEDULING IN DISTRIBUTED COMPUTING SYSTEMS 145

ample of adaptive scheduling would be one which is based
on the stochastic learning automata model [39]. An anal-
ogy may be drawn here between the notion of an adaptive
scheduler and adaptive control [38], although the useful-
ness of such an analogy for purposes of performance anal-
ysis and implementation are questionable [5 11. In contrast
to an adaptive scheduler, a nonadaptive scheduler would
be one which does not necessarily modify its basic control
mechanism on the basis of the history of system activity.
An example would be a scheduler which always weighs
its inputs in the same way regardless of the history of the
system’s behavior.

b) Load Balancing: This category of policies, which
has received a great deal of attention recently [lo], [111,
[36], [40]-[42], [46], [53], approaches the problem with
the philosophy that being fair to the hardware resources
of the system is good for the users of that system. The
basic idea is to attempt to balance (in some sense) the load
on all processors in such a way as to allow progress by
all processes on all nodes to proceed at approximately
the same rate. This solution is most effective when the
nodes of a system are homogeneous since this allows all
nodes to know a great deal about the structure of the other
nodes. Normally, information would be passed about the
network periodically or on demand [11, [60] in order to
allow all nodes to obtain a local estimate concerning the
global state of the system. Then the nodes act together in
order to remove work from heavily loaded nodes and place
it at lightly loaded nodes. This is a class of solutions which
relies heavily on the assumption that the information at
each node is quite accurate in order to prevent processes
from endlessly being circulated about the system without
making much progress. Another concern here is deciding
on the basic unit used to measure the load on individual
nodes.

As was pointed out in Section I, the placement of this
characteristic near the bottom of the hierarchy in the flat
portion of the taxonomy is not related to its relative im-
portance or generality compared with characteristics at
higher levels. In fact, it might be observed that at the point
that a choice is made between optimal and suboptimal
characteristics, that a specific objective or cost function
must have already been made. However, the purpose of
the hierarchy is not so much to describe relationships be-
tween classes of the taxonomy, but to reduce the size of
the overall description of the taxonomy so as to make it
more useful in comparing different approaches to solving
the scheduling problem.

c) Bidding: In this class of policy mechanisms, a
basic protocol f ramework exists which describes the way
in which processes are assigned to processors. The re-
sulting scheduler is one which is usually cooperative in
the sense that enough information is exchanged (between
nodes with tasks to execute and nodes which may be able
to execute tasks) so that an assignment of tasks to proces-
sors can be made which is beneficial to all nodes in the
system as a whole.

To illustrate the basic mechanism of bidding, the
framework and terminology of [49] will be used. Each

node in the network is responsible for two roles with re-
spect to the bidding process: manager and contractor. The
manager represents the task in need of a location to exe-
cute, and the contractor represents a node which is able
to do work for other nodes. Note that a single node takes
on both of these roles, and that there are no nodes which
are strictly managers or contractors alone. The manager
announces the existence of a task in need of execution by
a tusk announcement, then receives bids from the other
nodes (contractors). A wide variety of possibilities exist
concerning the type and amount of information exchanged
in order to make decisions 1531, [59]. The amount and
type of information exchanged are the major factors in
determining the effectiveness and performance of a sched-
uler employing the notion of bidding. A very important
feature of this class of schedulers is that all nodes gener-
ally have full autonomy in the sense that the manager ul-
timately has the power to decide where to send a task from
among those nodes which respond with bids. In addition,
the contractors are also autonomous since they are never
forced to accept work if they do not choose to do so.

d) Probabilistic: This classification has existed in
scheduling systems for some time [131. The basic idea for
this scheme is motivated by the fact that in many assign-
ment problems the number of permutations of the avail-
able work and the number of mappings to processors so
large, that in order to analytically examine the entire so-
lution space would require a prohibitive amount of time.

Instead, the idea of randomly (according to some known
distribution) choosing some process as the next to assign
is used. Repeatedly using this method, a number of dif-
ferent schedules may be generated, and then this set is
analyzed to choose the best from among those randomly
generated. The fact that an important attribute is used to
bias the random choosing process would lead one to ex-
pect that the schedule would be better than one chosen
entirely at random. The argument that this method ac-
tually produces a good selection is based on the expecta-
tion that enough variation is introduced by the random
choosing to allow a good solution to get into the randomly
chosen set.

An alternative view of probabilistic schedulers are those
which employ the principles of decision theory in the form
of team theory [24]. These would be classified as proba-
bilistic since suboptimal decisions are influenced by prior
probabilities derived from best-guesses to the actual states
of nature. In addition, these prior probabilities are used
to determine (utilizing some random experiment) the next
action (or scheduling decision).

e) One-Time Assignment Versus Dynamic Reassign-
ment: In this classification, we consider the entities to be
scheduled. If the entities are jobs in the traditional batch
processing sense of the term [193, [23], then we consider
the single point in time in which a decision is made as to
where and when the job is to execute. While this tech-
nique technically corresponds to a dynamic approach, it
is static in the sense that once a decision is made to place
and execute a job, no further decisions are made concem-
ing the job. We would characterize this class as one-time

www.manaraa.com

146 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

assignments. Notice that in this mechanism, the only in-
formation usable by the scheduler to make its decision is
the information given it by the user or submitter of the
job. This information might include estimated execution
time or other system resource demands. One critical point
here is the fact that once users of a system understand the
underlying scheduling mechanism, they may present false
information to the system in order to receive better re-
sponse. This point fringes on the area of psychological
behavior, but human interaction is an important design
factor to consider in this case since the behavior of the
scheduler itself is trying to mimic a general philosophy.
Hence, the interaction of this philosophy with the sys-
tem’s users must be considered.

In contrast, solutions in the dynamic reassignment class
try to improve on earlier decisions by using information
on smaller computation units-the executing subtasks of
jobs or task forces. This category represents the set of
systems which 1) do not trust their users to provide ac-
curate descriptive information, and 2) use dynamically
created information to adapt to changing demands of user
processes. This adaptation takes the form of migrating
processes (including current process state information).
There is clearly a price to be paid in terms of overhead,
and this price must be carefully weighed against possible
benefits.

An interesting analogy exists between the differentia-
tion made here and the question of preemption versus
nonpreemption in uniprocessor scheduling systems. Here,
the difference lies in whether to move a process from one
place to another once an assignment has been made, while
in the uniprocessor case the question is whether to remove
the running process from the processor once a decision
has been made to let it run.

III. EXAMPLES

In this section, examples will be taken from the pub-
lished literature to demonstrate their relationships to one
another with respect to the taxonomy detailed in Section
II. The purpose of this section is twofold. The first is to
show that many different scheduling algorithms can fit into
the taxonomy and the second is to show that the categories
of the taxonomy actually correspond, in most cases, to
methods which have been examined.

A. Global Static
In [48], we see an example of an optimal, enumerative

approach to the task assignment problem. The criterion
function is defined in terms of optimizing the amount of
time a task will require for all interprocess communica-
tion and execution, where the tasks submitted by users are
assumed to be broken into suitable modules before exe-
cution. The cost function is called a minimax criterion
since it is intended to minimize the maximum execution
and communication time required by any single processor
involved in the assignment. Graphs are then used to rep-
resent the module to processor assignments and the as-

signments are then transformed to a type of graph match-
ing known as weak homomorphisms. The optimal search
of this solution space can then be done using the A* al-
gorithm from artificial intelligence [43]. The solution also
achieves a certain degree of processor load balancing as
well.

Reference [4] gives a good demonstration of the use-
fulness of the taxonomy in that the paper describes the
algorithm given as a solution to the optimal dynamic as-
signment problem for a two processor system. However,
in attempting to make an objective comparison of this pa-
per with other dynamic systems, we see that the algorithm
proposed is actually a static one. In terms of the taxonomy
of Section II, we would categorize this as a static, opti-
mal, graph theoretical approach in which the a priori as-
sumptions are expanded to include more information about
the set of tasks to be executed. The way in which reas-
signment of tasks is performed during process execution
is decided upon before any of the program modules begin
execution. Instead of making reassignment decisions dur-
ing execution, the stronger assumption is simply made that
all information about the dynamic needs of a collection of
program modules is available a priori. This assumption
says that if a collection of modules possess a certain com-
munication pattern at the beginning of their execution, and
this pattern is completely predictable, that this pattern may
change over the course of execution and that these vari-
ations are predictable as well. Costs of relocation are also
assummed to be available, and this assumption appears to
be quite reasonable.

The model presented in [35] represents an example of
an optimum mathematical programming formulation em-
ploying a branch and bound technique to search the so-
lution space. The goals of the solution are to minimize
interprocessor communications, balance the utilization of
all processors, and satisfy all other engineering applica-
tion requirements. The model given defines a cost func-
tion which includes interprocessor communication costs
and processor execution costs. The assignment is then
represented by a set of zero-one variables, and the total
execution cost is then represented by a summation of all
costs incurred in the assignment. In addition to the above,
the problem is subject to constraints which allow the so-
lution to satisfy the load balancing and engineering ap-
plication requirements. The algorithm then used to search
the solution space (consisting of all potential assign-
ments) is derived from the basic branch and bound tech-
nique .

Again, in [lo], we see an example of the use of the
taxonomy in comparing the proposed system to other ap-
proaches. The title of the paper-‘ ‘Load Balancing in
Distributed Systems”- indicates that the goal of the so-
lution is to balance the load among the processors in the
system in some way. However, the solution actually fits
into the static, optimal, queueing theoretical class. The
goal of the solution is to minimize the execution time of
the entire program to maximize performance and the al-
gorithm is derived from results in Markov decision the-

www.manaraa.com

CASAVANT AND KUHL: TAXONOMY OF SCHEDULING IN DISTRIBUTED COMPUTING SYSTEMS 147

ory. In contrast to the definition of load balancing given
in Section II, where the goal was to even the load and
utilization of system resources, the approach in this paper
is consumer oriented.

An interesting approximate mathematical programming
solution, motivated from the viewpoint of fault-tolerance,
is presented in [2]. The algorithm is suggested by the
computational complexity of the optimal solution to the
same problem. In the basic solution to a mathematical
programming problem, the state space is either implicitly
or explicitly enumerated and searched. One approxima-
tion method mentioned in this paper [64] involves first
removing the integer constraint, solving the continuous
optimization problem, discretizing the continuous solu-
tion, and obtaining a bound on the discretization error.
Whereas this bound is with respect to the continuous op-
timum, the algorithm proposed in this paper directly uses
an approximation to solve the discrete problem and bound
its performance with respect to the discrete optimum.

The last static example to be given here appears in [66].
This paper gives a heuristic-based approach to the prob-
lem by using extractable data and synchronization re-
quirements of the different subtasks. The three primary
heuristics used are:

1) loss of parallelism,
2) synchronization,
3) data sources.

The way in which loss of parallelism is used is to assign
tasks to nodes one at a time in order to affect the least loss
of parallelism based on the number of units required for
execution by the task currently under consideration. The
synchronization constraints are phrased in terms ofjring
conditions which are used to describe precedence rela-
tionships between subtasks. Finally, data source infor-
mation is used in much the same way a functional pro-
gram uses precedence relations between parallel portions
of a computation which take the roles of varying classes
of suppliers of variables to other subtasks. The final heu-
ristic algorithm involves weighting each of the previous
heuristics, and combining them. A distinguishing feature
of the algorithm is its use of a greedy approach to find a
solution, when at the time decisions are made, there can
be no guarantee that a decision is optimal. Hence, an op-
timal solution would more carefully search the solution
space using a back track or branch and bound method, as
well as using exact optimization criterion instead of the
heuristics suggested.

B. Global Dynamic
Among the dynamic solutions presented in the litera-

ture, the majority fit into the general category of physi-
cally distributed, cooperative, suboptimal, heuristic.
There are, however, examples for some of the other
classes.

First, in the category of physically nondistributed, one
of the best examples is the experimental system developed
for the Cm* architecture-Medusa [44]. In this system,
the functions of the operating system (e.g., file system,

scheduler) are physically partitioned and placed at differ-
ent places in the system. Hence, the scheduling function
is placed at a particular place and is accessed by all users
at that location.

Another rare example exists in the physically distrib-
uted noncooperative class. In this example [27], random
level-order scheduling is employed at all nodes indepen-
dently in a tightly coupled MIMD machine. Hence, the
overhead involved in this algorithm is minimized since no
information need be exchanged to make random deci-
sions. The mechanism suggested is thought to work best
in moderate to heavily loaded systems since in these cases,
a random policy is thought to give a reasonably balanced
load on all processors. In contrast to a cooperative solu-
tion, this algorithm does not detect or try to avoid system
overloading by sharing loading information among pro-
cessors, but makes the assumption that it will be under
heavy load most of the time and bases all of its decisions
on that assumption. Clearly, here, the processors are not
necessarily concerned with the utilization of their own re-
sources, but neither are they concerned with the effect
their individual decisions will have on the other proces-
sors in the system.

It should be pointed out that although the above two
algorithms (and many others) are given in terms relating
to general-purpose distributed processing systems, that
they do not strictly adhere to the definition of distributed
data processing system as given in [17].

In [57], another rare example exists in the form of a
physically distributed, cooperative, optimal solution in a
dynamic environment. The solution is given for the two-
processor case in which critical load factors are calculated
prior to program execution. The method employed is to
use a graph theoretical approach to solving for load fac-
tors for each process on each processor. These load fac-
tors are then used at run time to determine when a task
could run better if placed on the other processor.

The final class (and largest in terms of amount of ex-
isting work) is the class of physically distributed, coop-
erative, suboptimal, heuristic solutions.

In [53] a solution is given which is adaptive, load bal-
ancing, and makes one-time assignments of jobs to pro-
cessors. No a priori assumptions are made about the char-
acteristics of the jobs to be scheduled. One major
restriction of these algorithms is the fact that they only
consider assignment of jobs to processors and once a job
becomes an active process, no reassignment of processes
is considered regardless of the possible benefit. This is
very defensible, though, if the overhead involved in mov-
ing a process is very high (which may be the case in many
circumstances). Whereas this solution cannot exactly be
considered as a bidding approach, exchange of informa-
tion occurs between processes in order for the algorithms
to function. The first algorithm (a copy of’which resides
at each host) compares its own busyness with its estimate
of the busyness of the least busy host. If the difference
exceeds the bias (or threshold) designated at the current
time, one job is moved from the job queue of the busier

www.manaraa.com

148 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

host to the less busy one. The second algorithm allows
each host to compare itself with all other hosts and in-
volves two biases. If the difference exceeds bias1 but not
bias2, then one job is moved. If the difference exceeds
bias2, then two jobs are moved. There is also an upper
limit set on the number of jobs which can move at once
in the entire system. The third algorithm is the same as
algorithm one except that an antithrashing mechanism is
added to account for the fact that a delay is present be-
tween the time a decision is made to move a job, and the
time it arrives at the destination. All three algorithms had
an adaptive feature added which would turn off all parts
of the respective algorithm except the monitoring of load
when system load was below a particular minimum
threshold. This had the effect of stopping processor
thrashing whenever it was practically impossible to bal-
ance the system load due to lack of work to balance. In
the high load case, the algorithm was turned off to reduce
extraneous overhead when the algorithm could not affect
any improvment in the system under any redistribution of
jobs. This last feature also supports the notion in the non-
cooperative example given earlier that the load is usually
automatically balanced as a side effect of heavy loading.
The remainder of the paper focuses on simulation results
to reveal the impact of modifying the biasing parameters.

The work reported in [6] is an example of an algorithm
which employs the heuristic of load-balancing, and prob-
abilistically estimates the remaining processing times of
processes in the system. The remaining processing time
for a process was estimated by one of the following meth-
ods:

memoryless: Re(t) = E(S)

pastrepeats: Re(t) = t

distribution: Re(t) = E{S - tlS > t>

optimal: Re(t) = R(t)

where R(t) is the remaining time needed given that t sec-
onds have already elapsed, S is the service time random
variable, and Re (t) is the scheduler’s estimate of R(t).
The algorithm then basically uses the first three methods
to predict response times in order to obtain an expected
delay measure which in turn is used by pairs of processors
to balance their load on a pairwise basis. This mechanism
is adopted by all pairs on a dynamic basis to balance the
system load.

Another adaptive algorithm is discussed in [52] and is
based on the bidding concept. The heuristic mentioned
here utilizes prior information concerning the known
characteristics of processes such as resource require-
ments, process priority, special resource needs, prece-
dence constraints, and the need for clustering and distrib-
uted groups. The basic algorithm periodically evaluates
each process at a current node to decide whether to trans-
mit bid requests for a particular process. The bid requests
include information needed for contractor nodes to make
decisions regarding how well they may be able to execute

the process in question. The manager receives bids and
compares them to the local evaluation and will transfer
the process if the difference between the best bid and the
local estimate is above a certain threshold. The key to the
algorithm is the formulation of a function to be used in a
modified McCulloch-Pitts neuron. The neuron (imple-
mented as a subroutine) evaluates the current performance
of individual processes. Several different functions were
proposed, simulated, and discussed in this paper. The
adaptive nature of this algorithm is in the fact that it dy-
namically modifies the number of hops that a bid request
is allowed to travel depending on current conditions. The
most significant result was that the information regarding
process clustering and distributed groups seems to have
had little impact on the overall performance of the sys-
tem.

The final example to be discussed here [55] is based on
a heuristic derived from the area of Bayesian decision the-
ory [33]. The algorithm uses no a priori knowledge re-
garding task characteristics, and is dynamic in the sense
that the probability distributions which allow maximizing
decisions to be made based on the most likely current state
of nature are updated dynamically. Monitor nodes make
observations every p seconds and update probabilities.
Every d seconds the scheduler itself is invoked to approx-
imate the current state of nature and make the appropriate
maximizing action. It was found that the parameters p and
d could be tuned to obtain maximum performance for a
minimum cost.

IV. DISCUSSION

In this section, we will attempt to demonstrate the ap-
plication of the qualitative description tool presented ear-
lier to a role beyond that of classifying existing systems.
In particular, we will utilize two behavior characteris-
tics-performance and eficiency, in conjunction with the
classification mechanism presented in the taxonomy, to
identify general qualities of scheduling systems which will
lend themselves to managing large numbers of proces-
sors. In addition, the uniform terminology presented will
be employed to show that some earlier-thought-to-be-syn-
onymous notions are actually distinct, and to show that
the distinctions are valuable. Also, in at least one case,
two earlier-thought-to-be-different notions will be shown
to be much the same.

A. Decentralized Versus Distributed Scheduling
When considering the decision-making policy of a

scheduling system, there are two fundamental compo-
nents-responsibility and authority. When responsibility
for making and carrying out policy decisions is shared
among the entities in a distributed system, we say that the
scheduler is distributed. When authority is distributed to
the entities of a resource management system, we call this
decentralized. This differentiation exists in many other
organizational structures. Any system which possesses
decentralized authority must have distributed responsibil-

www.manaraa.com

CASAVANT AND KUHL: TAXONOMY OF SCHEDULING IN DISTRIBUTED COMPUTING SYSTEMS 149

ity, but it is possible to allocate responsibility for gath-
ering information and carrying out policy decisions, with-
out giving the authority to change past or make future
decisions.

B. Dynamic Versus Adaptive Scheduling
The terms dynamic scheduling and pdaptive scheduling

are quite often attached to various proposed algorithms in
the literature, but there appears to be some confusion as
to the actual difference between these two concepts. The
more common property to find in a scheduler (or resource
management subsystem) is the dynamic property. In a dy-
namic situation, the scheduler takes into account the cur-
rent state of affairs as it perceives them in the system.
This is done during the normal operation of the system
under a dynamic and unpredictable load. In an adaptive
system, the scheduling policy itself reflects changes in its
environment-the running system. Notice that the differ-
ence here is one of level in the hierarchical solution to the
scheduling problem. Whereas a dynamic solution takes
environmental inputs into account when making its deci-
sions, an adaptive solution takes environmental stimuli
into account to modify the scheduling policy itself.

C. The Resource/Consumer Dichotomy in Performance
Analysis

As is the case in describing the actions or qualitative
behavior of a resource management subsystem, the per-
formance of the scheduling mechanisms employed may
be viewed from either the resource or consumer point of
view. When considering performance from the consumer
(or user) point of view, the metric involved is often one
of minimizing individual program completion times-re-
sponse. Alternately, the resource point of view also con-
siders the rate of process execution in evaluating perfor-
mance, but from the view of total system throughput. In
contrast to response, throughput is concerned with seeing
that all users are treated fairly and that all are making
progress. Notice that the resource view of maximizing re-
source utilization is compatible with the desire for maxi-
mum system throughput. Another way of stating this,
however, is that all users, when considered as a single
collective user, are treated best in this environment of
maximizing system throughput or maximizing resource
utilization. This is the basic philosophy of load-balancing
mechanisms. There is an inherent conflict, though, in
trying to optimize both response and throughput.

D. Focusing on Future Directions
In this section, the earlier presented taxonomy, in con-

junction with two terms used to quantitatively describe
system behavior, will be used to discuss possibilities for
distributed scheduling in the environment of a large sys-
tem of loosely coupled processors.

In previous work related to the scheduling problem, the
basic notion of performance has been concerned with
evaluating the way in which users’ individual needs are
being satisfied. The metrics most commonly applied are

response and throughput [23]. While these terms accu-
rately characterize the goals of the system in terms of how
well users are served, they are difficult to measure during
the normal operation of a system. In addition to this prob-
lem, the metrics do not lend themselves well to direct
interpretation as to the action to be performed to increase
performance when it is not at an acceptable level.

These metrics are also difficult to apply when analysis
or simulation of such systems is attempted. The reason
for this is that two important aspects of scheduling are
necessarily intertwined. These two aspects are perfor-
mance and eficiency. Performance is the part of a sys-
tem’s behavior that encompasses how well the resource
to be managed is being used to the benefit of all users of
the system. Efficiency, though, is concerned with the
added cost (or overhead) associated with the resource
management facility itself. In terms of these two criteria,
we may think of desirable system behavior as that which
has the highest level of performance possible, while in-
curring the least overhead in doing it. Clearly, the exact
combination of these two which brings about the most de-
sirable behavior is dependent on many factors and in many
ways resembles the space/time tradeoff present in com-
mon algorithm design. The point to be made here is that
simultaneous evaluation of efficiency and performance is
very difficult due to this inherent entanglement. What we
suggest is a methodology for designing scheduling sys-
tems in which efficiency and performance are separately
observable.

Current and future investigations will involve studies to
better understand the relationships between performance,
efficiency, and their components as they effect quantita-
tive behavior. It is hoped that a much better understanding
can be gained regarding the costs and benefits of alter-
native distributed scheduling strategies.

V. CONCLUSION

This paper has sought to bring together the ideas and
work in the area of resource management generated in the
last 10 to 15 years. The intention has been to provide a
suitable framework for comparing past work in the area
of resource management, while providing a tool for clas-
sifying and discussing future work. This has been done
through the presentation of common terminology and a
taxonomy on the mechanisms employed in computer sys-
tem resource management. While the taxonomy could be
used to discuss many different types of resource manage-
ment, the attention of the paper and included examples
have been on the application of the taxonomy to the pro-
cessing resource. Finally, recommendations regarding
possible fruitful areas for future research in the area of
scheduling in large scale general-purpose distributed
computer systems have been discussed.

As is the case in any survey, there are many pieces of
work to be considered. It is hoped that the examples pre-
sented fairly represent the true state of research in this
area, while it is acknowledged that not all such examples
have been discussed. In addition to the references at the

www.manaraa.com

IEEE TRANSAC 'TIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

end of this paper, the Appendix contains an annotated
bibliography for work not explicitly mentioned in the text
but which have aided in the construction of this taxonomy
through the support of additional examples. The exclu-
sion of any particular results has not been intentional nor
should it be construed as a judgment of the merit of that
work. Decisions as to which papers to use as examples
were made purely on the basis of their applicability to the
context of the discussion in which they appear.

APPENDIX
ANNOTATED BIBLIOGRAPHY

Application of Taxonomy to Examples from Literature

This Appendix contains references to additional exam-
ples not included in Section III as well as abbreviated de-
scriptions of those examples discussed in detail in the text
of the paper. The purpose is to demonstrate the use of the
taxonomy of Section II in classifying a large number of
examples from the literature.

[l] G. R. Andrews, D. P. Dobkin, and P. J. Downey,
“Distributed allocation with pools of servers,” in
ACM SIGACT-SIGOPS Symp. Principles of Distrib-
uted Computing, Aug. 1982, pp. 73-83.

Global, dynamic, distributed (however in a lim-
ited sense), cooperative, suboptimal, heuristic, bid-
ding, nonadaptive, dynamic reassignment.

[2] J. A. Bannister and K. S. Trivedi, “Task allocation
in fault-tolerant distributed systems,” Acta Inform.,
vol. 20, pp. 261-281, 1983.

Global, static, suboptimal, approximate, mathe-
matical programming.

[3] F. Berman and L. Snyder, “On mapping parallel al-
gorithms into parallel architectures,” in I984 Int.
Conf. Parallel Proc., Aug. 1984, pp. 307-309.

Global, static, optimal, graph theory.
[4] S. H. Bokhari, “Dual processor scheduling with dy-

namic reassignment,” IEEE Trans. Software Eng.,
vol. SE-5, no. 4, pp. 326-334, July 1979.

Global, static, optimal, graph theoretic.
[5] -, “A shortest tree algorithm for optimal assign-

ments across space and time in a distributed proces-
sor system,” IEEE Trans. Software Eng., vol. SE-
7, no. 6, pp. 335-341, Nov. 1981.

Global, static, optimal, mathematical program-
ming, intended for tree-structured applications.

[6] R. M. Bryant and R. A. Finkel, “A stable distrib-
uted scheduling algorithm,” in Proc. 2nd Int. Conf
Dist. Camp., Apr. 1981, pp. 314-323.

Global, dynamic, physically distributed, cooper-
ative, suboptimal, heuristic, probabilistic, load-bal-
ancing .

[7] T. L. Casavant and J. G. Kuhl, “Design of a
loosely-coupled distributed multiprocessing net-
work, ’ ’ in 1984 Int. Conf. Parallel Proc., Aug.
1984, pp. 42-45.

Global, dynamic, physically distributed, cooper-

ative, suboptimal, heuristic, load-balancing, bid-
ding, dynamic reassignment.

[8] L. M. Casey, “Decentralized scheduling,” Austra-
lian Comput. J., vol. 13, pp. 58-63, May 1981.

Global, dynamic, physically distributed, cooper-
ative, suboptimal, heuristic, load-balancing.

[9] T. C. K. Chou and J. A. Abraham, “Load balancing
in distributed systems,” IEEE Trans. Software Eng.,
vol. SE-8, no. 4, pp. 401-412, July 1982.

Global, static, optimal, queueing theoretical.
[lo] T. C. K. Chou and J. A. Abraham, “Load redistri-

bution under failure in distributed systems,” IEEE
Trans. Cornput., vol. C-32, no. 9, pp. 799-808,
Sept. 1983.

Global, dynamic (but with static parings of sup-
porting and supported processors), distributed, co-
operative, suboptimal, provides 3 separate heuristic
mechanisms, motivated from fault recovery aspect.

[ll] Y. C. Chow and W. H. Kohler, “Models for dy-
namic load balancing in a heterogeneous multiple
processor system,” IEEE Trans. Comput., vol. C-
28, no. 5, pp. 354-361, May 1979.

Global, dynamic, physically distributed, cooper-
ative, suboptimal, heuristic, load-balancing, (part of
the heuristic approach is based on results from
queueing theory).

[12] W. W. Chu et al., “Task allocation in distributed
data processing,” Computer, vol. 13, no. 11, pp.
57-69, Nov. 1980.

Global, static, optimal, suboptimal, heuristic,
heuristic approached based on graph theory and
mathematical programming are discussed.

[131 K. W. Doty , P. L. McEntire, and J. G. O ’Reilly ,
“Task allocation in a distributed computer system,”
in IEEE InfoCom, 1982, pp. 33-38.

Global, static, optimal, mathematical program-
ming (nonlinear spatial dynamic programming).

[14] K. Efe, “Heuristic models of task assignment
scheduling in distributed systems,” Computer, vol.
15, pp. 50-56, June 1982.

Global, static, suboptimal, heuristic, load-balanc-
ing.

[15] J. A. B. Fortes and F. Parisi-Presicce, “Optimal
linear schedules for the parallel execution of algo-
rithms, ’ ’ in 1984 Int. Conf. Parallel Proc., Aug.
1984, pp. 322-329,

Global, static, optimal, uses results from mathe-
matical programming for a large class of data-de-
pendency driven applications.

[161 A. Gabrielian and D. B. Tyler, “Optimal object al-
location in distributed computer systems,” in Proc.
4th Int. Conf. Dist. Comp. Systems, May 1984, pp.
84-95.

Global, static, optimal, mathematical program-
ming, uses a heuristic to obtain a solution close to
optimal, employs backtracking to find optimal one
from that.

[17] C. Gao, J. W. S. Liu, and M. Railey, “Load bal-

www.manaraa.com

CASAVANT AND KUHL: TAXONOMY OF SCHEDULING IN DISTRIBUTED COMPUTING SYSTEMS 151

ancing algorithms in homogeneous distributed sys-
tems,” in 1984 Int. Conf. Parallel Proc., Aug.
1984, pp. 302-306.

Global, dynamic, distributed, cooperative, sub-
optimal, heuristic, probabilistic.

[18] W. Huen et al., ‘ ‘TECHNEC, A network computer
for distributed task control,” in Proc. 1st Rocky
Mountain Symp. Microcomputers, Aug. 1977, pp,
233-237.

Global, static, suboptimal, heuristic.
[19] K. Hwang et al., ‘ ‘A Unix-based local computer

network with load balancing,” Computer, vol. 15,
no. 4, pp. 55-65, Apr. 1982.

Global, dynamic, physically distributed, cooper-
ative, suboptimal, heuristic, load-balancing.

[20] D. Klappholz and H. C. Park, ‘ ‘Parallelized process
scheduling for a tightly-coupled MIMD machine,”
in 1984 Int. Conf. Parallel Proc., Aug. 1984, pp.
315-321.

Global, dynamic, physically distributed, non-
cooperative.

[21] C. P. Kruskal and A. Weiss, “Allocating inde-
pendent subtasks on parallel processors extended ab-
stract , ’ ’ in 1984 Int. Conf. Parallel Proc., Aug.
1984, pp. 236-240.

Global, static, suboptimal, but optimal for a set of
optimistic assumptions, heuristic, problem stated in
terms of queuing theory.

[22] V. M. Lo, “Heuristic algorithms for task assign-
ment in distributed systems,” in Proc. 4th Int. Con5
Dist. Comp. Systems, May 1984, pp. 30-39.

Global, static, suboptimal, approximate, graph
theoretic.

PI -3 “Task assignment to minimize completion
time,” in 5th Int. Conf. Distributed Computing Sys-
tems, May 1985, pp, 329-336.

Global, static, optimal, mathematical program-
ming for some special cases, but in general is sub-
optimal, heuristic using the LPT algorithm.

[24] P. Y. R. Ma, E. Y. S. Lee, and J. Tsuchiya, “A
task allocation model for distributed computing sys-
tems,” IEEE Trans. Cornput., vol. C-3 1, no. 1, pp.
41-47, Jan. 1982.

Global, static, optimal, mathematical program-
ming (branch and bound).

[25] S. Majumdar and M. L. Green, “A distributed real
time resource manager,” in Proc. IEEE Symp. Dis-
tributed Data Acquisition, Computing and Control,
1980, pp. 185-193.

Global, dynamic, distributed, cooperative, sub-
optimal, heuristic, load balancing, nonadaptive.

[26] R. Manner, “Hardware task/processor scheduling in
a polyprocessor environment,” IEEE Trans. Com-
put., vol. C-33, no. 7, pp. 626-636, July 1984.

Global, dynamic, distributed control and respon-
sibility, but centralized information in hardware on
bus lines. Cooperative, optimal, (priority) load bal-
ancing .

[27] L. M. Ni and K. Hwang, “Optimal load balancing
for a multiple processor system,” in Proc. Int. Conj
Parallel Proc., 1981, pp. 352-357.

Global, static, optimal, mathematical program-
ming.

[28] L. M. Ni and K. Abani, “Nonpreemptive load bal-
ancing in a class of local area networks, ” in Proc.
Comp. Networking Symp., Dec. 1981, pp. 113-118.

Global, dynamic, distributed, cooperative, opti-
mal and suboptimal solutions given-mathematical
programming, and adaptive load balancing, respec-
tively .

[29] J. Ousterhout, D. Scelza, and P. Sindhu, “Medusa:
An experiment in distributed operating system struc-
ture,” Commun. ACM, vol. 23, no. 2, pp. 92-105,
Feb. 1980.

Global, dynamic, physically nondistributed.
[30] M. L. Powell and B. P. Miller, “Process migration

in DEMOS/MP,” in Proc. 9th Symp. Operating
Systems Principles (OS Review), vol. 17, no. 5, pp.
110-119, Oct. 1983.

Global, dynamic, distributed, cooperative, sub-
optimal, heuristic, load balancing but no specific de-
cision rule given.

[3 l] C. C. Price and S. Krishnaprasad, “Software allo-
cation models for distributed computing systems,”
in Proc. 4th Int. Conf. Dist. Comp. Systems, May
1984, pp. 40-48.

Global, static, optimal, mathematical program-
ming, but also suggest heuristics.

[32] C. V. Ramamoorthy et al., “Optimal scheduling
strategies in a multiprocessor system,” IEEE Trans.
Comput., vol. C-21, no. 2, pp. 137-146, Feb. 1972.

Global, static, optimal solution presented for
comparison with the heuristic one also presented.
Graph theory is employed in the sense that it uses
task precedence graphs.

[33] K. Ramamritham and J. A. Stankovic, “Dynamic
task scheduling in distributed hard real-time sys-
tems,” in Proc. 4th Int. Conf. Dist. Comp. Systems,
May 1984, pp. 96-107.

Global, dynamic, distributed, cooperative, sub-
optimal, heuristic, bidding, one-time assignments (a
real time guarantee is applied before migration).

[34] J. Reif and P. Spirakis, “Real-time resource allo-
cation in a distributed system,” in ACM SIGACT-
SIGOPS Symp. Principles of Distributed Comput-
ing, Aug. 1982, pp. 84-94.

Global, dynamic, distributed, noncooperative,
probabilistic.

[35] S. Sahni, “Scheduling multipipeline and multipro-
cessor computers, ’ ’ in 1984 Int. Conf. Parallel Pro-
cessing, Aug. 1984, pp. 333-337.

Global, static, suboptimal, heuristic.
[36] T. G. Saponis and P. L. Crews, “A model for de-

centralized control in a fully distributed processing
system,” in Fall COMPCON, 1980, pp. 307-312.

Global, static, suboptimal, heuristic based on load

www.manaraa.com

152

[371

[381

1391

1401

1411

1421

[431

[441

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 2. FEBRUARY 1988

balancing. Also intended for applications of the na- 1451
ture of coupled recurrence systems.
C. C. Shen and W. H. Tsai, “A graph matching
approach to optimal task assignment in distributed
computing systems using a minimax criterion,” 1461
IEEE Trans. Comput., vol. C-34, no. 3, pp. 197-
203, Mar. 1985.

Global, static, optimal, enumerative.
J. A. Stankovic, “The analysis of a decentralized
control algorithm for job scheduling utilizing Bayes-
ian decision theory,” in Proc. Int. Conf. Parallel [47]
Proc., 1981, pp. 333-337.

Global, dynamic, distributed, cooperative, sub-
optimal, heuristic, one-time assignment, probabilis-
tic.
-3 “A heuristic for cooperation among decentral-
ized controllers, ’ ’ in IEEE INFOCOM 1983, Apr.
1983, pp. 331-339. 1481

Global, dynamic, distributed, cooperative, sub-
optimal, heuristic, one-time assignment, probabilis-
tic.
J. A. Stankovic and I. S. Sidhu, “An adaptive bid-
ding algorithm for processes, clusters and distrib-
uted groups, ’ ’ in Proc. 4th Int. Conf. Dist. Comp.
Systems, May 1984, pp. 49-59. 1491

Global, dynamic, physically distributed, cooper-
ative, suboptimal, heuristic, adaptive, bidding, ad-
ditional heuristics regarding clusters and distributed
groups.
J. A. Stankovic, “Simulations of three adaptive, de-
centralized controlled, job scheduling algorithms,” [501
Comput. Networks, vol. 8, no. 3, pp. 199-217, June
1984.

Global, dynamic, physically distributed, cooper-
ative, suboptimal, heuristic, adaptive, load-balanc-
ing, one-time assignment. Three variants of this 1511
basic approach given.
-2 “An application of Bayesian decision theory
to decentralized control of job scheduling,” IEEE
Trans. Comput., vol. C-34, no. 2, pp. 117- 130,
Feb. 1985.

Global, dynamic, physically distributed, cooper-
ative, suboptimal, heuristic based on results from
Bayesian decision theory.
-3 “Stability and distributed scheduling algo-

H. S. Stone and S. H. Bokhari, “Control of distrib-
uted processes,” Computer, vol. 11, pp, 97-106,
July 1978.

Global, static, optimal, graph theoretical.
H. Sullivan and T. Bashkow, “A large-scale ho-
mogeneous, fully distributed machine-I,” in Proc.
4th Symp. Computer Architecture, Mar. 1977, pp.
105-l 17.

Global, dynamic, physically distributed, cooper-
ative, suboptimal, heuristic, bidding.
A. M. VanTilborg and L. D. Wittie, “Wave sched-
uling-Decentralized scheduling of task forces in
multicomputers,” IEEE Trans. Comput., vol. C-33,
no. 9, pp. 835-844, Sept. 1984.

Global, dynamic, distributed, cooperative, sub-
optimal, heuristic, probabilistic, adaptive. Assumes
tree-structured (logically) task-forces.
R. A. Wagner and K. S. Trivedi, “Hardware con-
figuration selection through discretizing a continu-
ous variable solution,” in Proc. 7th IFIP Symp.
Comp. Performance Modeling, Measurement and
Evaluation, Toronto, Canada, 1980, pp. 127-142.

Global, static, suboptimal, approximate, mathe-
matical programming.
Y. T. Wang and R. J. T. Morris, “Load sharing in
distributed systems,” IEEE Trans. Comput., vol. C-
34, no. 3, pp. 204-217, Mar. 1985.

Global, dynamic, physically distributed, cooper-
ative, suboptimal, heuristic, one-time assignment,
load-balancing.
M. 0. Ward and D. J. Romero, “Assigning paral-
lel-executable, intercommunicating subtasks to pro-
cessors, ’ ’ in 1984 Int. Con$ Parallel Proc., Aug.
1984, pp. 392-394.

Global, static, suboptimal, heuristic.
L. D. Wittie and A. M. Van Tilborg, “MICROS, a
distributed operating system for MICRONET, a re-
configurable network computer,” IEEE Trans.
Comput., vol. C-29, no. 12, pp. 1133-1144, Dec.
1980.

Global, dynamic, physically distributed, cooper-
ative, suboptimal, heuristic, load-balancing (also
with respect to message traffic).

REFERENCES

rithms,” in Proc. ACM Nat. Conf., New Orleans,
Mar. 1985. [I] A. K. Agrawala, S. K. Tripathi, and G. Ricart, “Adaptive routing

using a virtual waiting time technique,” IEEE Trans. Sofrware Eng.,
Here there are two separate algorithms specified. vol. SE-8, no. 1, pp. 76-81, Jan. 1982.

The first is a Global, dynamic, physically distrib- [2] J. A. Bannister and K. S. Trivedi, “Task allocation in fault-tolerant

uted, cooperative, heuristic, adaptive, dynamic distributed systems,” Acta Inform., vol. 20, pp. 261-281, 1983.
]3] J. F. Bartlett, “A nonstop kernel,” in Proc. 8th Symp. Operating

reassignment example based on stochastic learning Systems Principles, Dec. 1981, pp. 22-29.
automata. The second is a Global, dynamic, physi-]4] S. H. Bokhari, “Dual processor scheduling with dynamic reassign-

tally distributed, cooperative, heuristic, bidding, ment,” IEEE Trans. Software Eng., vol. SE-5, no. 4, pp. 326-334,
Julv 1979.

one-time assignment approach. [5] S. H. Bokhari, “ A shortest tree algorithm for optimal assignments

H. S. Stone, “Critical load factors in two-processor across space and time in a distributed processor system,” IEEE Trans.

distributed systems,” IEEE Trans. Sofiware Eng.,
Software Eng., vol. SE-7, no. 6, pp. 335-341, Nov. 1981.

]6] R. M. Bryant and R. A. Finkel, “A stable distributed scheduling, al-
vol. SE-4, no. 3, pp. 254-258, May 1978. gorithm, ” in Proc. 2nd Inc. Con& Disr. Camp., Apr. 1981, pp. 314-

Global, dynamic, physically distributed, cooper- 323.

ative, optimal, (graph theory based).
[7] E. S. Buffa, Modern Production Management, 5th ed. New York:

Wiley, 1977.

www.manaraa.com

CASAVANT AND KUHL: TAXONOMY OF SCHEDULING IN DISTRIBUTED COMPUTING SYSTEMS 153

[8] T. L. Casavant and J. G. Kuhl, “Design of a loosely-coupled distrib-
uted multiprocessing network,” in 1984 Int. Conf. Parallel Proc.,
Aug. 1984, pp. 42-45.

[9] L. M. Casey, “Decentralized scheduling,” Australian Comput. I.,
vol. 13, pp. 58-63, May 1981.

[lo] T. C. K. Chou and J. A. Abraham, “Load balancing in distributed
systems,” IEEE Trans. Software Eng., vol. SE-8, no. 4, pp. 401-
412, July 1982.

[II] Y. C. Chow and W. H. Kohler, “Models for dynamic load balancing
in a heterogeneous multiple processor system,” IEEE Trans. Com-
put., vol. C-28, no. 5, pp. 354-361, May 1979.

[12] E. G. Coffman and P. J. Denning, Operating Systems The-
ory. Englewood Cliffs, NJ: Prentice-Hall, 1973.

[13] R. W. Conway, W. L. Maxwell, and L. W. Miller, Theory of Sched-
uling. Reading, MA: Addison-Wesley, 1967.

[14] K. W. Doty, P. L. McEntire, and J. G. O’Reilly, “Task allocation
in a distributed computer system,” in IEEE InfoCom, 1982, pp. 33-
38.

[15] K. Efe, “Heuristic models of task assignment scheduling in distrib-
uted systems,” Computer, vol. 15, pp. 50-56, June 1982.

[16] C. S. Ellis, J. A. Feldman, and J. E. Heliotis, “Language constructs
and support systems for distributed computing,” in ACM SIGACT-
SIGOPS Symp. Principles of Distributed Computing, Aug. 1982, pp.
l-9.

[17] P. H. Enslow Jr., “What is a “distributed” data processing system,”
Computer, vol. 11, no. 1, pp. 13-21, Jan. 1978.

[18] J. R. Evans et al., Applied Production and Operations Manage-
ment. St. Paul, MN: West, 1984.

[19] I. Flares, OSMVT. Boston, MA: Allyn and Bacon, 1973.
[20] M. J. Flynn, “Very high-speed computing systems,” Proc. IEEE,

vol. 54, pp. 1901-1909, Dec. 1966.
[21] A. Gabrielian and D. B. Tyler, “Optimal object allocation in distrib-

uted computer systems,” in Proc. 4th Int. Conf Dist. Comp. Sys-
tems, May 1984, pp. 84-95.

[22] M. J. Gonzalez, “Deterministic processor scheduling,” ACM Com-
put. Surveys, vol. 9, no. 3, pp. 173-204, Sept. 1977.

[23] H. Hellerman and T. F. Conroy, Computer System Perfor-
mance. New York: McGraw-Hill, 1975.

[24] Y. Ho, “Team decision theory and information structures,” Proc.
IEEE, vol. 68, no. 6, pp. 644-654, June 1980.

[25] E. D. Jensen, “The Honeywell experimental distributed processor-
An overview,” Computer, vol. 11, pp. 28-38, Jan. 1978.

[26] A. K. Jones et al., “StarOS, a multiprocessor operating system for
the support of task forces,” in Proc. 7th Symp. Operating System
Prin., Dec. 1979, pp. 117-127.

[27] D. Klappholz and H. C. Park, “Parallelized process scheduling for a
tightly-coupled MIMD machine, ” in 1984 Int. Conf. Parallel Proc.,
Aug. 1984, pp. 315-321.

[28] L. Kleinrock, Queuing Systems, Vol. 2: Computer Applica-
tions. New York: Wiley, 1976.

[29] L. Kleinrock and A. Nilsson, “On optimal scheduling algorithms for
time-shared systems,” J. ACM, vol. 28, no. 3, pp. 477-486, July
1981.

[30] C. P. Kruskal and A. Weiss, “Allocating independent subtasks on
parallel processors extended abstract,” in 1984 Int. Conf Parallel
Proc., Aug. 1984, pp. 236-240.

[3 I] R. E. Larsen, Tutorial: Distributed Control. New York: IEEE Press,
1979.

[32] G. Le Lann, Motivations, Objectives and Characterizations of Dis-
tributed Systems (Lecture Notes in Computer Science, Vol.
105). New York: Springer-Verlag, 1981, pp. l-9.

[33] B. W. Lindgren, Elements of Decision Theory. New York: Mac-
Millan, 197 1.

[34] V. M. Lo, “Heuristic algorithms for task assignment in distributed
systems, ” in Proc. 4th Int. Conf Dist. Comp. Systems, May 1984,
pp. 30-39.

[35] P. Y. R. Ma, E. Y. S. Lee, and J. Tsuchiya, “A task allocation model
for distributed computing systems,” IEEE Trans. Comput., vol. C-
31, no. 1, pp. 41-47, Jan. 1982.

[36] R. Manner, “Hardware task/processor scheduling in a polyprocessor
environment,” IEEE Trans. Comput., vol. C-33, no. 7, pp. 626-636,
July 1984.

[37] P. L. McEntire, J. G. O’Reilly, and R. E. Larson, Distributed Com-
puting: Concepts and Implementations. New York: IEEE Press,
1984.

[38] E. Mishkin and L. Braun Jr., Adaptive Control Systems. New York:
McGraw-Hill, 1961.

[39] K. Narendra, “Learning automata-A survey,” IEEE Trans. Syst.,
Man, Cybern., vol. SMC-4, no. 4, pp. 323-334, July 1974.

t401

[411

1421

[431

1441

[451

[461

t471

[481

L. M. Ni and K. Hwang, “Optimal load balancing strategies for a
multiple processor system, ” in Proc. Int. Conf. Parallel Proc., 1981,
pp. 352-357.
L. M. Ni and K. Abani, “Nonpreemptive load balancing in a class
of local area networks,” in Proc. Comp. Networking Symp., Dec.
1981, pp. 113-118.
L. M. Ni, K. Hwang, “Optimal load balancing in a multiple proces-
sor system with many job classes,” IEEE Trans. Software Eng., vol.
SE-1 1, no. 5, pp. 491-496, May 1985.
N. J. Nilsson, Principles of Artificial Intelligence. Palo Alto, CA:
Tioga, 1980.
J. Ousterhout, D. Scelza, and P. Sindhu, “Medusa: An experiment
in distributed operating system sttucture,” Commun. ACM, vol. 23,
no. 2, pp. 92-105, Feb. 1980.
G. Popek et al., “LOCUS: A network transparent, high reliability
distributed svstem. ” in Proc. 8th Svmo. O.S. Principles, Dec. 1981,
pp. 169-177.

_ .
M. L. Powell and B. P. Miller, “Process migration in DEMOS/MP,”
in Proc. 9th Symp. Operating Systems Principles (OS Review), vol.
17, no. 5, pp. 110-119, Oct. 1983.
C. C. Price and S. Krishnaprasad, “Software allocation models for
distributed computing systems, ” in Proc. 4th Int. Conf Dist. Comp.
Systems, May 1984, pp. 40-48.
C. Shen and W. Tsai, “A graph matching approach to optimal task
assignment in distributed computing systems using a minimax crite-
rion,” IEEE Trans. Comput., vol. C-34, no. 3, pp. 197-203, Mar.
1985.

[49] R. G. Smith, “The contract net protocol: High-level communication
and control in a distributed problem solver,” IEEE Trans. Comput.,
vol. C-29, no. 12, pp. 1104-l 113, Dec. 1980.

[50] M. H. Solomon and R. A. Finkel, “The ROSCOE distributed oper-
ating system, ” in Proc. 7th Symp. O.S. Principles, Dec. 1979, pp.
108-l 14.

[51] J. A. Stankovic et al., “An evaluation of the applicability of different
mathematical approaches to the analysis of decentralized control al-
gorithms,” in Proc. IEEE COMPSAC 82, Nov. 1982, pp. 62-69.

[52] J. A. Stankovic and I. S. Sidhu, “An adaptive bidding algorithm for
processes, clusters and distributed groups,” in Proc. 4th Int. Conf.
Dist. Comp. Systems, May 1984, pp. 49-59.

[53] J. A. Stankovic, “Simulations of three adaptive, decentralized con-
trolled, job scheduling algorithms,” Comput. Networks, vol. 8, no.
3, pp. 199-217, June 1984.

[54] -, “A perspective on distributed computer systems,” IEEE Trans.
Cornput., vol. C-33, no. 12, pp. 1102-1115, Dec. 1984.

[55] J. A. Stankovic, “An application of Bayesian decision theory to de-
centralized control of job scheduling,” IEEE Trans. Comput., vol.
C-34,no. 2, pp. 117-130, Feb. 1985.

[56] J. A. Stankovic et al., “A review of current research and critical
issues in distributed system software,” IEEE Comput. Sot. Distrib-
uted Processing Tech. Committee Newslett., vol. 7, no. 1, pp. 14-
47, Mar. 1985.

[57] H. S. Stone, “Critical load factors in two-processor distributed sys-
tems,” IEEE Trans. Software Eng., vol. SE-4, no. 3, pp. 254-258,
May 1978.

[58] H. S. Stone and S. H. Bokhari, “Control of distributed processes,”
Computer, vol. 11, pp. 97-106, July 1978.

[59] H. Sullivan and T. Bashkow, “A large-scale homogeneous, fully dis-
tributed machine-II,” in Proc. 4th Symp. Computer Architecture,
Mar. 1977, pp. 118-124.

[60] A. S. Tanenbaum, Computer Networks. Englewood Cliffs, NJ:
Prentice-Hall, 1981.

[61] D. P. Tsay and M. T. Liu, “MIKE: A network operating system for
the distributed double-loop computer network,” IEEE Trans. Soft-
ware Eng., vol. SE-9, no. 2, pp. 143-154, Mar. 1983.

[62] D. C. Tsichritzis and P. A. Bernstein, Operating Systems. New
York: Academic, 1974.

[63] K. Vairavan and R. A. DeMillo, “On the computational complexity
of a generalized scheduling problem,” IEEE Trans. Comput., vol. C-
25, no. 11, pp. 1067-1073, Nov. 1976.

[64] R. A. Wagner and K. S. Trivedi, “Hardware configuration selection
through discretizing a continuous variable solution,” in Proc. 7th IFIP
Symp. Comp. Performance Modeling, Measurement and Evaluation,
Toronto, Canada, 1980, pp. 127-142.

[65] Y. T. Wang and R. J. T. Morris, “Load sharing in distributed sys-
tems,” IEEE Trans. Cornput., vol. C-34, no. 3, pp. 204-217, Mar.
1985.

[66] M. 0. Ward and D. J. Romero, “Assigning parallel-executable, in-
tercommunicating subtasks to processors,” in I984 Int. Conf Par-
allel Proc., Aug. 1984, pp. 392-394.

www.manaraa.com

154 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 2, FEBRUARY 1988

167) L. D. Wittie and A. M. Van Tilborg, “MICROS: A distributed op-
erating system for MICRONET, a reconfigurable network com-
puter,” IEEE Trans. Cornput., vol C-29, no. 12, pp. 1133-1144,
Dec. 1980.

Thomas L. Casavant (S’85-M’86) received the
B.S. degree in computer science and the M.S. and
Ph.D. degrees in electrical and computer engi-
neering from the University of Iowa, Iowa City,
in 1982, 1983, and 1986, respectively.

He is currently an Assistant Professor of Elec-
trical Engineering at Purdue University, West La-
fayette, IN. His research interests include com-
puter architecture, operating systems, distributed
systems, and performance modeling and analysis.

Dr. Casavant is a member of the IEEE Com-

Jon G. Kuhl (S’76-M’79) received the M.S. de-
gree in electrical and computer engineering and
the Ph.D. degree in computer science from the
University of Iowa, Iowa City, in 1977 and 1980,
respectively.

He is currently an Associate Professor in the
Department of Electrical and Computer Engineer-
ing at the University of Iowa. His primary re-
search interests are in fault-tolerant computing and
distributed systems, particularly where the two
fields interface. His other research interests in-

:cture, graph theory, and parallel processing.

puter Society and the Association for Computing Machinery.

