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Abstract-One measure of usefulness of a general-purpose distrib- 
uted computing system is the system’s ability to provide a level of per- 
formance commensurate to the degree of multiplicity of resources pres- 
ent in the system. Many different approaches and metrics of 
performance have been proposed in an attempt to achieve this goal in 
existing systems. In addition, analogous problem formulations exist in 
other fields such as control theory, operations research, and produc- 
tion management. However, due to the wide variety of approaches to 
this problem, it is difficult to meaningfully compare different systems 
since there is no uniform means for qualitatively or quantitatively eval- 
uating them. It is difficult to successfully build upon existing work or 
identify areas worthy of additional effort without some understanding 
of the relationships between past efforts. In this paper, a taxonomy of 
approaches to the resource management problem is presented in an 
attempt to provide a common terminology and classification mecha- 
nism necessary in addressing this problem. The taxonomy, while pre- 
sented and discussed in terms of distributed scheduling, is also appli- 
cable to most types of resource management. As an illustration of the 
usefulness of the taxonomy an annotated bibliography is given which 
classifies a large number of distributed scheduling approaches accord- 
ing to the taxonomy. 

Index Terms-Distributed operating systems, distributed resource 
management, general-purpose distributed computing systems, sched- 
uling, task allocation, taxonomy. 

I. INTRODUCTION 

T HE study of distributed computing has grown to in- 
clude a large range of applications [16], [17], [31], 

[32], [37], [54], [%I. However,  at the core of all the ef- 
forts to exploit the potential power of distributed com- 
putation are issues related to the management and allo- 
cation of system resources relative to the computational 
load of the system. This is particularly true of attempts to 
construct large general-purpose multiprocessors [3], [8], 
WI, P61, WI-WI, 1501, [611, W71. 

The notion that a loosely coupled collection of proces- 
sors could function as a more powerful general-purpose 
computing facility has existed for quite some time. A large 
body of work has focused on the problem of managing the 
resources of a system in such a way as to effectively ex- 
ploit this power. The result of this effort has been the pro- 
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posal of a variety of widely differing techniques and meth- 
odologies for distributed resource management. Along 
with these competing proposals has come the inevitable 
proliferation of inconsistent and even contradictory ter- 
minology, as well as a number of slightly differing prob- 
lem formulations, assumptions, etc. Thus, it is difficult to 
analyze the relative merits of alternative schemes in a 
meaningful fashion. It is also difficult to focus common 
effort on approaches and areas of study which seem most 
likely to prove fruitful. 

This paper attempts to tie the area of distributed sched- 
uling together under a common, uniform set of terminol- 
ogy. In addition, a taxonomy is given which allows the 
classification of distributed scheduling algorithms accord- 
ing to a reasonably small set of salient features. This al- 
lows a convenient means of quickly describing the central 
aspects of a particular approach, as well as a basis for 
comparison of commonly classified schemes. 

Earlier work has attempted to classify certain aspects 
of the scheduling problem. In [9], Casey gives the basis 
of a hierarchical categorization. The taxonomy presented 
here agrees with the nature of Casey’s categorization. 
However,  a large number of additional fundamental dis- 
tinguishing features are included which differentiate be- 
tween existing approaches. Hence, the taxonomy given 
here provides a more detailed and complete look at the 
basic issues addressed in that work. Such detail is deemed 
necessary to allow meaningful comparisons of different 
approaches. In contrast to the taxonomy of Casey, Wang 
[65] provides a taxonomy of load-sharing schemes. 
Wang’s taxonomy succinctly describes the range of ap- 
proaches to the load-sharing problem. The categorization 
presented describes solutions as being either source ini- 
tiative or server initiative. In addition, solutions are char- 
acterized along a continuous range according to the de- 
gree of information dependency involved. The taxonomy 
presented here takes a much broader view of the distrib- 
uted scheduling problem in which load-sharing is only one 
of several possible basic strategies available to a system 
designer. Thus the classifications discussed by Wang de- 
scribe only a narrow category within the taxonomy. 

Among existing taxonomies, one can find examples of 
flat and hierarchical classification schemes. The taxon- 
omy proposed here is a hybrid of these two-hierarchical 
as long as possible in order to reduce the total number of 
classes, and flat when the descriptors of the system may 
be chosen in an arbitrary order. The levels in the hier- 
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archy have been chosen in order to keep the description 
of the taxonomy itself small, and do not necessarily re- 
flect any ordering of importance among characteristics. In 
other words, the descriptors comprising the taxonomy do 
not attempt to hierarchically order the characteristics of 
scheduling systems from more to less general. This point 
should be stressed especially with respect to the position- 
ing of the flat portion of the taxonomy near the bottom of 
the hierarchy. For example, load balancing is a charac- 
teristic which pervades a large number of distributed 
scheduling, systems, yet for the sake of reducing the size 
of the description of the taxonomy, it has been placed in 
the flat portion of the taxonomy and, for the sake of brev- 
ity, the flat portion has been placed near the bottom of the 
hierarchy. 

The remainder of the paper is organized as follows. In 
Section II, the scheduling problem is defined as it applies 
to distributed resource management. In addition, a tax- 
onomy is presented which serves to allow qualitative de- 
scription and comparison of distributed scheduling sys- 
tems. Section III will present examples from the literature 
to demonstrate the use of the taxonomy in qualitatively 
describing and comparing existing systems. Section IV 
presents a discussion of issues raised by the taxonomy and 
also suggests areas in need of additional work. 

In addition to the work discussed in the text of the pa- 
per, an extensive annotated bibliography is given in an 
Appendix. This Appendix further demonstrates the effec- 
t iveness of the taxonomy in allowing standardized de- 
scription of existing systems. 

II. THE SCHEDULING PROBLEM AND DESCRIBING ITS 
SOLUTIONS 

The general scheduling problem has been described a 
number of times and in a number of different ways in the 
literature [ 121, [22], [63] and is usually a restatement of 
the classical notions of job sequencing [ 131 in the study 
of production management [7]. For the purposes of dis- 
tributed process scheduling, we take a broader view of the 
scheduling function as a resource management resource. 
This management resource is basically a mechanism or 
policy used to efficiently and effectively manage the ac- 
cess to and use of a resource by its various consumers. 
Hence, we may view every instance of the scheduling 
problem as consisting of three main components. 

1) Consumer(s).  
2) Resource(s).  
3) Policy. 

Like other management or control problems, understand- 
ing the functioning of a scheduler may best be done by 
observing the effect it has on its environment. In this case, 
one can observe the behavior of the scheduler in terms of 
how the policy affects the resources and consumers. Note 
that although there is only one policy, the scheduler may 
be viewed in terms of how it affects either or both re- 
sources and consumers. This relationship between the 
scheduler, policies, consumers, and resources is shown in 
Fig. 1. 

I I I L 
Fig. 1. Scheduling system. 

In light of this description of the scheduling problem, 
there are two properties which must be considered in eval- 
uating any scheduling system 1) the satisfaction of the 
consumers with how well the scheduler manages the re- 
source in question (performance), and 2) the satisfaction 
of the consumers in terms of how difficult or costly it is 
to access the management resource itself (efficiency). In 
other words, the consumers want to be able to quickly and 
efficiently access the actual resource in question, but do 
not desire to be hindered by overhead problems associated 
with using the management function itself. 

One by-product of this statement of the general sched- 
uling problem is the unification of two terms in common 
use in the literature. There is often an implicit distinction 
between the terms scheduling and aZZocation. However,  
it can be argued that these are merely alternative formu- 
lations of the same problem, with allocation posed in 
terms of resource allocution (from the resources’ point of 
view), and scheduling viewed from the consumer’s point 
of view. In this sense, allocation and scheduling are 
merely two terms describing the same general mecha- 
nism, but described from different viewpoints. 

A. The Classijication Scheme 
The usefulness of the four-category taxonomy of com- 

puter architecture presented by Flynn [20] has been well 
demonstrated by the ability to compare systems through 
their relation to that taxonomy. The goal of the taxonomy 
given here is to provide a commonly accepted set of terms 
and to provide a mechanism to allow comparison of past 
work in the area of distributed scheduling in a qualitative 
way. In addition, it is hoped that the categories and their 
relationships to each other have been chosen carefully 
enough to indicate areas in need of future work as well as 
to help classify future work. 

The taxonomy will be kept as small as possible by pro- 
ceeding in a hierarchical fashion for as long as possible, 
but some choices of characteristics may be made indepen- 
dent of previous design choices, and thus will be specified 
as a set of descriptors from which a subset may be chosen. 
The taxonomy, while discussed and presented in terms of 
distributed process scheduling, is applicable to a larger 
set of resources. In fact, the taxonomy could usefully be 
employed to classify any set of resource management sys- 
tems. However,  we will focus our attention on the area 
of process management since it is in this area which we 
hope to derive relationships useful in determining poten- 
tial areas for future work. 

1) Hierarchical Classification: The structure of the hi- 
erarchical portion of the taxonomy is shown in Fig. 2. A 
discussion of the hierarchical portion then follows. 
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Fig. 2. Task scheduling characteristics. 

a) Local Versus Global: At the highest level, we 
may distinguish between local and global scheduling. Lo- 
cal scheduling is involved with the assignment of pro- 
cesses to the time-slices of a single processor. Since the 
area of scheduling on single-processor systems [ 121, [62] 
as well as the area of sequencing or job-shop scheduling 
[ 131, [ 181 has been actively studied for a number of years, 
this taxonomy will focus on global scheduling. Global 
scheduling is the problem of deciding where to execute a 
process, and the job of local scheduling is left to the op- 
erating system of the processor to which the process is 
ultimately allocated. This allows the processors in a mul- 
t iprocessor increased autonomy while reducing the re- 
sponsibility (and consequently overhead) of the global 
scheduling mechanism. Note that this does not imply that 
global scheduling must be done by a single central au- 
thority, but rather, we view the problems of local and 
global scheduling as separate issues, and (at least logi- 
cally) separate mechanisms are at work solving each. 

b) Static Versus Dynamic: The next level in the hi- 
erarchy (beneath global scheduling) is a choice between 
static and dynamic scheduling. This choice indicates the 
time at which the scheduling or assignment decisions are 
made. 

In the case of static scheduling, information regarding 
the total mix of processes in the system as well as all the 
independent subtasks involved in a job or task force [26], 
[44] is assumed to be available by the time the program 
object modules are linked into load modules. Hence, each 
executable image in a system has a static assignment to a 
particular processor, and each time that process image is 
submitted for execution, it is assigned to that processor. 
A more relaxed definition of static scheduling may in- 
clude algorithms that schedule task forces for a particular 
hardware configuration. Over  a period of time, the topol- 
ogy of the system may change, but characteristics de- 
scribing the task force remain the same. Hence, the 
scheduler may generate a new assignment of processes to 

processors to serve as the schedule until the topology 
changes again. 

Note here that the term static scheduling as used in this 
paper has the same meaning as deterministic scheduling 
in [22] and tusk scheduling in [56]. These alternative 
terms will not be used, however, in an attempt to develop 
a consistent set of terms and taxonomy. 

c) Optimal Versus Suboptimal: In the case that all 
information regarding the state of the system as well as 
the resource needs of a process are known, an optimal 
assignment can be made based on some criterion function 
[5], [ 141, [21], [35], [40], [48]. Examples of optimization 
measures are minimizing total process completion time, 
maximizing utilization of resources in the system, or 
maximizing system throughput. In the event that these 
problems are computationally infeasible, suboptimal so- 
lutions may be tried [2], [34], [47]. Within the realm of 
suboptimal solutions to the scheduling problem, we may 
think of two general categories. 

d) Approximate Versus Heuristic: The first is to use 
the same formal computational model for the algorithm, 
but instead of searching the entire solution space for an 
optimal solution, we are satisfied when we find a “good” 
one. We will categorize these solutions as suboptimal-up- 
proximate. The assumption that a good solution can be 
recognized may not be so insignificant, but in the cases 
where a metric is available for evaluating a solution, this 
technique can be used to decrease the time taken to find 
an acceptable solution (schedule). The factors which de- 
termine whether this approach is worthy of pursuit in- 
clude: 

1) Availability of a function to evaluate a solution. 
2) The time required to evaluate a solution. 
3) The ability to judge according to some metric the 

value of an optimal solution. 
4) Availability of a mechanism for intelligently prun- 

ing the solution space. 
The second branch beneath the suboptimal category is 
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labeled heuristic [15], [30], [66]. This branch represents 
the category of static algorithms which make the most re- 
alistic assumptions about a priori knowledge concerning 
process and system loading characteristics. It also repre- 
sents the solutions to the static scheduling problem which 
require the most reasonable amount of time and other sys- 
tem resources to perform their function. The most distin- 
guishing feature of heuristic schedulers is that they make 
use of special parameters which affect the system in in- 
direct ways. Often, the parameter being monitored is cor- 
related to system performance in an indirect instead of a 
direct way, and this alternate parameter is much simpler 
to monitor or calculate. For example, clustering groups 
of processes which communicate heavily on the same pro- 
cessor and physically separating processes which would 
benefit from parallelism [52] directly decreases the over- 
head involved in passing information between processors, 
while reducing the interference among processes which 
may run without synchronization with one another. This 
result has an impact on the overall service that users re- 
ceive, but cannot be directly related (in a quantitative way) 
to system performance as the user sees it. Hence, our in- 
tuition, if nothing else, leads us to believe that taking the 
aforementioned actions when possible will improve sys- 
tem performance. However,  we may not be able to prove 
that a first-order relationship between the mechanism em- 
ployed and the desired result exists. 

e) Optimal and Suboptimal Approximate Tech- 
niques: Regardless of whether a static solution is optimal 
or suboptimal-approximate, there are four basic catego- 
ries of task allocation algorithms which can be used to 
arrive at an assignment of processes to processors. 

1) Solution space enumeration and search [48]. 
2) Graph theoretic [4], [57], [58]. 
3) Mathematical programming [5], [ 141, [21], [35], 

[401. 
4) Queueing theoretic [lo], [28], [29]. 

f) Dynamic Solutions: In the dynamic scheduling 
problem, the more realistic assumption is made that very 
little a priori knowledge is available about the resource 
needs of a process. It is also unknown in what environ- 
ment the process will execute during its lifetime. In the 
static case, a decision is made for a process image before 
it is ever executed, while in the dynamic case no decision 
is made until a process begins its life in the dynamic en- 
vironment of the system. Since it is the responsibility of 
the running system to decide where a process is to exe- 
cute, it is only natural to next ask where the decision itself 
is to be made. 

g) Distributed Versus Nondistributed: The next is- 
sue (beneath dynamic solutions) involves whether the re- 
sponsibility for the task of global dynamic scheduling 
should physically reside in a single processor [44] (phys- 
ically nondistributed) or whether the work involved in 
making decisions should be physically distributed among 
the processors [ 171. Here the concern is with the logical 
authority of the decision-making process. 

h) Cooperative Versus Noncooperative: Within the 
realm of distributed dynamic global scheduling, we may 

also distinguish between those mechanisms which involve 
cooperation between the distributed components (coop- 
erative) and those in which the individual processors make 
decisions independent of the actions of the other proces- 
sors (noncooperative). The question here is one of the de- 
gree of autonomy which each processor has in determin- 
ing how its own resources should be used. In the 
noncooperative case individual processors act alone as au- 
tonomous entities and arrive at decisions regarding the use 
of their resources independent of the effect of their deci- 
sion on the rest of the system. In the cooperative case each 
processor has the responsibility to carry out its own por- 
tion of the scheduling task, but all processors are working 
toward a common system-wide goal. In other words, each 
processor’s local operating system is concerned with 
making decisions in concert with the other processors in 
the system in order to achieve some global goal, instead 
of making decisions based on the way in which the deci- 
sion will affect local performance only. As in the static 
case, the taxonomy tree has reached a point where we 
may consider optimal, suboptimal-approximate, and sub- 
optimal-heuristic solutions. The same discussion as was 
presented for the static case applies here as well. 

In addition to the hierarchical portion of the taxonomy 
already discussed, there are a number of other distin- 
guishing characteristics which scheduling systems may 
have. The following sections will deal with characteris- 
tics which do not fit uniquely under any particular branch 
of the tree-structured taxonomy given thus far, but are 
still important in the way that they describe the behavior 
of a scheduler. In other words, the following could be 
branches beneath several of the leaves shown in Fig. 2 
and in the interest of clarity are not repeated under each 
leaf, but are presented here as a flat extension to the 
scheme presented thus far. It should be noted that these 
attributes represent a set of characteristics, and any par- 
ticular scheduling subsystem may possess some subset of 
this set. Finally, the placement of these characteristics 
near the bottom of the tree is not intended to be an indi- 
cation of their relative importance or any other relation to 
other categories of the hierarchical portion. Their position 
was determined primarily to reduce the size of the de- 
scription of the taxonomy. 

2) Flat Classijcation Characteristics: 
a) Adaptive Versus Nonadaptive: An adaptive solu- 

tion to the scheduling problem is one in which the algo- 
rithms and parameters used to implement the scheduling 
policy change dynamically according to the previous and 
current behavior of the system in response to previous de- 
cisions made by the scheduling system. An example of 
such an adaptive scheduler would be one which takes 
many parameters into consideration in making its deci- 
sions [52]. In response to the behavior of the system, the 
scheduler may start to ignore one parameter or reduce the 
importance of that parameter if it believes that parameter 
is either providing information which is inconsistent with 
the rest of the inputs or is not providing any information 
regarding the change in system state in relation to the val- 
ues of the other parameters being observed. A second ex- 
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ample of adaptive scheduling would be one which is based 
on the stochastic learning automata model [39]. An anal- 
ogy may be drawn here between the notion of an adaptive 
scheduler and adaptive control [38], although the useful- 
ness of such an analogy for purposes of performance anal- 
ysis and implementation are questionable [5 11. In contrast 
to an adaptive scheduler, a nonadaptive scheduler would 
be one which does not necessarily modify its basic control 
mechanism on the basis of the history of system activity. 
An example would be a scheduler which always weighs 
its inputs in the same way regardless of the history of the 
system’s behavior. 

b) Load Balancing: This category of policies, which 
has received a great deal of attention recently [lo], [ 111, 
[36], [40]-[42], [46], [53], approaches the problem with 
the philosophy that being fair to the hardware resources 
of the system is good for the users of that system. The 
basic idea is to attempt to balance (in some sense) the load 
on all processors in such a way as to allow progress by 
all processes on all nodes to proceed at approximately 
the same rate. This solution is most effective when the 
nodes of a system are homogeneous since this allows all 
nodes to know a great deal about the structure of the other 
nodes. Normally, information would be passed about the 
network periodically or on demand [ 11, [60] in order to 
allow all nodes to obtain a local estimate concerning the 
global state of the system. Then the nodes act together in 
order to remove work from heavily loaded nodes and place 
it at lightly loaded nodes. This is a class of solutions which 
relies heavily on the assumption that the information at 
each node is quite accurate in order to prevent processes 
from endlessly being circulated about the system without 
making much progress. Another concern here is deciding 
on the basic unit used to measure the load on individual 
nodes. 

As was pointed out in Section I, the placement of this 
characteristic near the bottom of the hierarchy in the flat 
portion of the taxonomy is not related to its relative im- 
portance or generality compared with characteristics at 
higher levels. In fact, it might be observed that at the point 
that a choice is made between optimal and suboptimal 
characteristics, that a specific objective or cost function 
must have already been made. However,  the purpose of 
the hierarchy is not so much to describe relationships be- 
tween classes of the taxonomy, but to reduce the size of 
the overall description of the taxonomy so as to make it 
more useful in comparing different approaches to solving 
the scheduling problem. 

c) Bidding: In this class of policy mechanisms, a 
basic protocol f ramework exists which describes the way 
in which processes are assigned to processors. The re- 
sulting scheduler is one which is usually cooperative in 
the sense that enough information is exchanged (between 
nodes with tasks to execute and nodes which may be able 
to execute tasks) so that an assignment of tasks to proces- 
sors can be made which is beneficial to all nodes in the 
system as a whole. 

To illustrate the basic mechanism of bidding, the 
framework and terminology of [49] will be used. Each 

node in the network is responsible for two roles with re- 
spect to the bidding process: manager and contractor. The 
manager represents the task in need of a location to exe- 
cute, and the contractor represents a node which is able 
to do work for other nodes. Note that a single node takes 
on both of these roles, and that there are no nodes which 
are strictly managers or contractors alone. The manager 
announces the existence of a task in need of execution by 
a tusk announcement, then receives bids from the other 
nodes (contractors). A wide variety of possibilities exist 
concerning the type and amount of information exchanged 
in order to make decisions 1531, [59]. The amount and 
type of information exchanged are the major factors in 
determining the effectiveness and performance of a sched- 
uler employing the notion of bidding. A very important 
feature of this class of schedulers is that all nodes gener- 
ally have full autonomy in the sense that the manager ul- 
timately has the power to decide where to send a task from 
among those nodes which respond with bids. In addition, 
the contractors are also autonomous since they are never 
forced to accept work if they do not choose to do so. 

d) Probabilistic: This classification has existed in 
scheduling systems for some time [ 131. The basic idea for 
this scheme is motivated by the fact that in many assign- 
ment problems the number of permutations of the avail- 
able work and the number of mappings to processors so 
large, that in order to analytically examine the entire so- 
lution space would require a prohibitive amount of time. 

Instead, the idea of randomly (according to some known 
distribution) choosing some process as the next to assign 
is used. Repeatedly using this method, a number of dif- 
ferent schedules may be generated, and then this set is 
analyzed to choose the best from among those randomly 
generated. The fact that an important attribute is used to 
bias the random choosing process would lead one to ex- 
pect that the schedule would be better than one chosen 
entirely at random. The argument that this method ac- 
tually produces a good selection is based on the expecta- 
tion that enough variation is introduced by the random 
choosing to allow a good solution to get into the randomly 
chosen set. 

An alternative view of probabilistic schedulers are those 
which employ the principles of decision theory in the form 
of team theory [24]. These would be classified as proba- 
bilistic since suboptimal decisions are influenced by prior 
probabilities derived from best-guesses to the actual states 
of nature. In addition, these prior probabilities are used 
to determine (utilizing some random experiment) the next 
action (or scheduling decision). 

e) One-Time Assignment Versus Dynamic Reassign- 
ment: In this classification, we consider the entities to be 
scheduled. If the entities are jobs in the traditional batch 
processing sense of the term [ 193, [23], then we consider 
the single point in time in which a decision is made as to 
where and when the job is to execute. While this tech- 
nique technically corresponds to a dynamic approach, it 
is static in the sense that once a decision is made to place 
and execute a job, no further decisions are made concem- 
ing the job. We would characterize this class as one-time 
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assignments. Notice that in this mechanism, the only in- 
formation usable by the scheduler to make its decision is 
the information given it by the user or submitter of the 
job. This information might include estimated execution 
time or other system resource demands. One critical point 
here is the fact that once users of a system understand the 
underlying scheduling mechanism, they may present false 
information to the system in order to receive better re- 
sponse. This point fringes on the area of psychological 
behavior, but human interaction is an important design 
factor to consider in this case since the behavior of the 
scheduler itself is trying to mimic a general philosophy. 
Hence, the interaction of this philosophy with the sys- 
tem’s users must be considered. 

In contrast, solutions in the dynamic reassignment class 
try to improve on earlier decisions by using information 
on smaller computation units-the executing subtasks of 
jobs or task forces. This category represents the set of 
systems which 1) do not trust their users to provide ac- 
curate descriptive information, and 2) use dynamically 
created information to adapt to changing demands of user 
processes. This adaptation takes the form of migrating 
processes (including current process state information). 
There is clearly a price to be paid in terms of overhead, 
and this price must be carefully weighed against possible 
benefits. 

An interesting analogy exists between the differentia- 
tion made here and the question of preemption versus 
nonpreemption in uniprocessor scheduling systems. Here, 
the difference lies in whether to move a process from one 
place to another once an assignment has been made, while 
in the uniprocessor case the question is whether to remove 
the running process from the processor once a decision 
has been made to let it run. 

III. EXAMPLES 

In this section, examples will be taken from the pub- 
lished literature to demonstrate their relationships to one 
another with respect to the taxonomy detailed in Section 
II. The purpose of this section is twofold. The first is to 
show that many different scheduling algorithms can fit into 
the taxonomy and the second is to show that the categories 
of the taxonomy actually correspond, in most cases, to 
methods which have been examined. 

A. Global Static 
In [48], we see an example of an optimal, enumerative 

approach to the task assignment problem. The criterion 
function is defined in terms of optimizing the amount of 
time a task will require for all interprocess communica- 
tion and execution, where the tasks submitted by users are 
assumed to be broken into suitable modules before exe- 
cution. The cost function is called a minimax criterion 
since it is intended to minimize the maximum execution 
and communication time required by any single processor 
involved in the assignment. Graphs are then used to rep- 
resent the module to processor assignments and the as- 

signments are then transformed to a type of graph match- 
ing known as weak homomorphisms. The optimal search 
of this solution space can then be done using the A* al- 
gorithm from artificial intelligence [43]. The solution also 
achieves a certain degree of processor load balancing as 
well. 

Reference [4] gives a good demonstration of the use- 
fulness of the taxonomy in that the paper describes the 
algorithm given as a solution to the optimal dynamic as- 
signment problem for a two processor system. However,  
in attempting to make an objective comparison of this pa- 
per with other dynamic systems, we see that the algorithm 
proposed is actually a static one. In terms of the taxonomy 
of Section II, we would categorize this as a static, opti- 
mal, graph theoretical approach in which the a priori as- 
sumptions are expanded to include more information about 
the set of tasks to be executed. The way in which reas- 
signment of tasks is performed during process execution 
is decided upon before any of the program modules begin 
execution. Instead of making reassignment decisions dur- 
ing execution, the stronger assumption is simply made that 
all information about the dynamic needs of a collection of 
program modules is available a priori. This assumption 
says that if a collection of modules possess a certain com- 
munication pattern at the beginning of their execution, and 
this pattern is completely predictable, that this pattern may 
change over the course of execution and that these vari- 
ations are predictable as well. Costs of relocation are also 
assummed to be available, and this assumption appears to 
be quite reasonable. 

The model presented in [35] represents an example of 
an optimum mathematical programming formulation em- 
ploying a branch and bound technique to search the so- 
lution space. The goals of the solution are to minimize 
interprocessor communications, balance the utilization of 
all processors, and satisfy all other engineering applica- 
tion requirements. The model given defines a cost func- 
tion which includes interprocessor communication costs 
and processor execution costs. The assignment is then 
represented by a set of zero-one variables, and the total 
execution cost is then represented by a summation of all 
costs incurred in the assignment. In addition to the above, 
the problem is subject to constraints which allow the so- 
lution to satisfy the load balancing and engineering ap- 
plication requirements. The algorithm then used to search 
the solution space (consisting of all potential assign- 
ments) is derived from the basic branch and bound tech- 
nique . 

Again, in [lo], we see an example of the use of the 
taxonomy in comparing the proposed system to other ap- 
proaches. The title of the paper-‘ ‘Load Balancing in 
Distributed Systems”- indicates that the goal of the so- 
lution is to balance the load among the processors in the 
system in some way. However,  the solution actually fits 
into the static, optimal, queueing theoretical class. The 
goal of the solution is to minimize the execution time of 
the entire program to maximize performance and the al- 
gorithm is derived from results in Markov decision the- 
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ory. In contrast to the definition of load balancing given 
in Section II, where the goal was to even the load and 
utilization of system resources, the approach in this paper 
is consumer oriented. 

An interesting approximate mathematical programming 
solution, motivated from the viewpoint of fault-tolerance, 
is presented in [2]. The algorithm is suggested by the 
computational complexity of the optimal solution to the 
same problem. In the basic solution to a mathematical 
programming problem, the state space is either implicitly 
or explicitly enumerated and searched. One approxima- 
tion method mentioned in this paper [64] involves first 
removing the integer constraint, solving the continuous 
optimization problem, discretizing the continuous solu- 
tion, and obtaining a bound on the discretization error. 
Whereas this bound is with respect to the continuous op- 
timum, the algorithm proposed in this paper directly uses 
an approximation to solve the discrete problem and bound 
its performance with respect to the discrete optimum. 

The last static example to be given here appears in [66]. 
This paper gives a heuristic-based approach to the prob- 
lem by using extractable data and synchronization re- 
quirements of the different subtasks. The three primary 
heuristics used are: 

1) loss of parallelism, 
2) synchronization, 
3) data sources. 

The way in which loss of parallelism is used is to assign 
tasks to nodes one at a time in order to affect the least loss 
of parallelism based on the number of units required for 
execution by the task currently under consideration. The 
synchronization constraints are phrased in terms ofjring 
conditions which are used to describe precedence rela- 
tionships between subtasks. Finally, data source infor- 
mation is used in much the same way a functional pro- 
gram uses precedence relations between parallel portions 
of a computation which take the roles of varying classes 
of suppliers of variables to other subtasks. The final heu- 
ristic algorithm involves weighting each of the previous 
heuristics, and combining them. A distinguishing feature 
of the algorithm is its use of a greedy approach to find a 
solution, when at the time decisions are made, there can 
be no guarantee that a decision is optimal. Hence, an op- 
timal solution would more carefully search the solution 
space using a back track or branch and bound method, as 
well as using exact optimization criterion instead of the 
heuristics suggested. 

B. Global Dynamic 
Among the dynamic solutions presented in the litera- 

ture, the majority fit into the general category of physi- 
cally distributed, cooperative, suboptimal, heuristic. 
There are, however, examples for some of the other 
classes. 

First, in the category of physically nondistributed, one 
of the best examples is the experimental system developed 
for the Cm* architecture-Medusa [44]. In this system, 
the functions of the operating system (e.g., file system, 

scheduler) are physically partitioned and placed at differ- 
ent places in the system. Hence, the scheduling function 
is placed at a particular place and is accessed by all users 
at that location. 

Another rare example exists in the physically distrib- 
uted noncooperative class. In this example [27], random 
level-order scheduling is employed at all nodes indepen- 
dently in a tightly coupled MIMD machine. Hence, the 
overhead involved in this algorithm is minimized since no 
information need be exchanged to make random deci- 
sions. The mechanism suggested is thought to work best 
in moderate to heavily loaded systems since in these cases, 
a random policy is thought to give a reasonably balanced 
load on all processors. In contrast to a cooperative solu- 
tion, this algorithm does not detect or try to avoid system 
overloading by sharing loading information among pro- 
cessors, but makes the assumption that it will be under 
heavy load most of the time and bases all of its decisions 
on that assumption. Clearly, here, the processors are not 
necessarily concerned with the utilization of their own re- 
sources, but neither are they concerned with the effect 
their individual decisions will have on the other proces- 
sors in the system. 

It should be pointed out that although the above two 
algorithms (and many others) are given in terms relating 
to general-purpose distributed processing systems, that 
they do not strictly adhere to the definition of distributed 
data processing system as given in [17]. 

In [57], another rare example exists in the form of a 
physically distributed, cooperative, optimal solution in a 
dynamic environment. The solution is given for the two- 
processor case in which critical load factors are calculated 
prior to program execution. The method employed is to 
use a graph theoretical approach to solving for load fac- 
tors for each process on each processor. These load fac- 
tors are then used at run time to determine when a task 
could run better if placed on the other processor. 

The final class (and largest in terms of amount of ex- 
isting work) is the class of physically distributed, coop- 
erative, suboptimal, heuristic solutions. 

In [53] a solution is given which is adaptive, load bal- 
ancing, and makes one-time assignments of jobs to pro- 
cessors. No a priori assumptions are made about the char- 
acteristics of the jobs to be scheduled. One major 
restriction of these algorithms is the fact that they only 
consider assignment of jobs to processors and once a job 
becomes an active process, no reassignment of processes 
is considered regardless of the possible benefit. This is 
very defensible, though, if the overhead involved in mov- 
ing a process is very high (which may be the case in many 
circumstances). Whereas this solution cannot exactly be 
considered as a bidding approach, exchange of informa- 
tion occurs between processes in order for the algorithms 
to function. The first algorithm (a copy of’which resides 
at each host) compares its own busyness with its estimate 
of the busyness of the least busy host. If the difference 
exceeds the bias (or threshold) designated at the current 
time, one job is moved from the job queue of the busier 
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host to the less busy one. The second algorithm allows 
each host to compare itself with all other hosts and in- 
volves two biases. If the difference exceeds bias1 but not 
bias2, then one job is moved. If the difference exceeds 
bias2, then two jobs are moved. There is also an upper 
limit set on the number of jobs which can move at once 
in the entire system. The third algorithm is the same as 
algorithm one except that an antithrashing mechanism is 
added to account for the fact that a delay is present be- 
tween the time a decision is made to move a job, and the 
time it arrives at the destination. All three algorithms had 
an adaptive feature added which would turn off all parts 
of the respective algorithm except the monitoring of load 
when system load was below a particular minimum 
threshold. This had the effect of stopping processor 
thrashing whenever it was practically impossible to bal- 
ance the system load due to lack of work to balance. In 
the high load case, the algorithm was turned off to reduce 
extraneous overhead when the algorithm could not affect 
any improvment in the system under any redistribution of 
jobs. This last feature also supports the notion in the non- 
cooperative example given earlier that the load is usually 
automatically balanced as a side effect of heavy loading. 
The remainder of the paper focuses on simulation results 
to reveal the impact of modifying the biasing parameters. 

The work reported in [6] is an example of an algorithm 
which employs the heuristic of load-balancing, and prob- 
abilistically estimates the remaining processing times of 
processes in the system. The remaining processing time 
for a process was estimated by one of the following meth- 
ods: 

memoryless: Re(t) = E(S) 

pastrepeats: Re( t) = t 

distribution: Re(t) = E{S - tlS > t> 

optimal: Re(t) = R(t) 

where R(t) is the remaining time needed given that t sec- 
onds have already elapsed, S is the service time random 
variable, and Re (t) is the scheduler’s estimate of R(t). 
The algorithm then basically uses the first three methods 
to predict response times in order to obtain an expected 
delay measure which in turn is used by pairs of processors 
to balance their load on a pairwise basis. This mechanism 
is adopted by all pairs on a dynamic basis to balance the 
system load. 

Another adaptive algorithm is discussed in [52] and is 
based on the bidding concept. The heuristic mentioned 
here utilizes prior information concerning the known 
characteristics of processes such as resource require- 
ments, process priority, special resource needs, prece- 
dence constraints, and the need for clustering and distrib- 
uted groups. The basic algorithm periodically evaluates 
each process at a current node to decide whether to trans- 
mit bid requests for a particular process. The bid requests 
include information needed for contractor nodes to make 
decisions regarding how well they may be able to execute 

the process in question. The manager receives bids and 
compares them to the local evaluation and will transfer 
the process if the difference between the best bid and the 
local estimate is above a certain threshold. The key to the 
algorithm is the formulation of a function to be used in a 
modified McCulloch-Pitts neuron. The neuron (imple- 
mented as a subroutine) evaluates the current performance 
of individual processes. Several different functions were 
proposed, simulated, and discussed in this paper. The 
adaptive nature of this algorithm is in the fact that it dy- 
namically modifies the number of hops that a bid request 
is allowed to travel depending on current conditions. The 
most significant result was that the information regarding 
process clustering and distributed groups seems to have 
had little impact on the overall performance of the sys- 
tem. 

The final example to be discussed here [55] is based on 
a heuristic derived from the area of Bayesian decision the- 
ory [33]. The algorithm uses no a priori knowledge re- 
garding task characteristics, and is dynamic in the sense 
that the probability distributions which allow maximizing 
decisions to be made based on the most likely current state 
of nature are updated dynamically. Monitor nodes make 
observations every p seconds and update probabilities. 
Every d seconds the scheduler itself is invoked to approx- 
imate the current state of nature and make the appropriate 
maximizing action. It was found that the parameters p and 
d could be tuned to obtain maximum performance for a 
minimum cost. 

IV. DISCUSSION 

In this section, we will attempt to demonstrate the ap- 
plication of the qualitative description tool presented ear- 
lier to a role beyond that of classifying existing systems. 
In particular, we will utilize two behavior characteris- 
tics-performance and eficiency, in conjunction with the 
classification mechanism presented in the taxonomy, to 
identify general qualities of scheduling systems which will 
lend themselves to managing large numbers of proces- 
sors. In addition, the uniform terminology presented will 
be employed to show that some earlier-thought-to-be-syn- 
onymous notions are actually distinct, and to show that 
the distinctions are valuable. Also, in at least one case, 
two earlier-thought-to-be-different notions will be shown 
to be much the same. 

A. Decentralized Versus Distributed Scheduling 
When considering the decision-making policy of a 

scheduling system, there are two fundamental compo- 
nents-responsibility and authority. When responsibility 
for making and carrying out policy decisions is shared 
among the entities in a distributed system, we say that the 
scheduler is distributed. When authority is distributed to 
the entities of a resource management system, we call this 
decentralized. This differentiation exists in many other 
organizational structures. Any system which possesses 
decentralized authority must have distributed responsibil- 
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ity, but it is possible to allocate responsibility for gath- 
ering information and carrying out policy decisions, with- 
out giving the authority to change past or make future 
decisions. 

B. Dynamic Versus Adaptive Scheduling 
The terms dynamic scheduling and pdaptive scheduling 

are quite often attached to various proposed algorithms in 
the literature, but there appears to be some confusion as 
to the actual difference between these two concepts. The 
more common property to find in a scheduler (or resource 
management subsystem) is the dynamic property. In a dy- 
namic situation, the scheduler takes into account the cur- 
rent state of affairs as it perceives them in the system. 
This is done during the normal operation of the system 
under a dynamic and unpredictable load. In an adaptive 
system, the scheduling policy itself reflects changes in its 
environment-the running system. Notice that the differ- 
ence here is one of level in the hierarchical solution to the 
scheduling problem. Whereas a dynamic solution takes 
environmental inputs into account when making its deci- 
sions, an adaptive solution takes environmental stimuli 
into account to modify the scheduling policy itself. 

C. The Resource/Consumer Dichotomy in Performance 
Analysis 

As is the case in describing the actions or qualitative 
behavior of a resource management subsystem, the per- 
formance of the scheduling mechanisms employed may 
be viewed from either the resource or consumer point of 
view. When considering performance from the consumer 
(or user) point of view, the metric involved is often one 
of minimizing individual program completion times-re- 
sponse. Alternately, the resource point of view also con- 
siders the rate of process execution in evaluating perfor- 
mance, but from the view of total system throughput. In 
contrast to response, throughput is concerned with seeing 
that all users are treated fairly and that all are making 
progress. Notice that the resource view of maximizing re- 
source utilization is compatible with the desire for maxi- 
mum system throughput. Another way of stating this, 
however, is that all users, when considered as a single 
collective user, are treated best in this environment of 
maximizing system throughput or maximizing resource 
utilization. This is the basic philosophy of load-balancing 
mechanisms. There is an inherent conflict, though, in 
trying to optimize both response and throughput. 

D. Focusing on Future Directions 
In this section, the earlier presented taxonomy, in con- 

junction with two terms used to quantitatively describe 
system behavior, will be used to discuss possibilities for 
distributed scheduling in the environment of a large sys- 
tem of loosely coupled processors. 

In previous work related to the scheduling problem, the 
basic notion of performance has been concerned with 
evaluating the way in which users’ individual needs are 
being satisfied. The metrics most commonly applied are 

response and throughput [23]. While these terms accu- 
rately characterize the goals of the system in terms of how 
well users are served, they are difficult to measure during 
the normal operation of a system. In addition to this prob- 
lem, the metrics do not lend themselves well to direct 
interpretation as to the action to be performed to increase 
performance when it is not at an acceptable level. 

These metrics are also difficult to apply when analysis 
or simulation of such systems is attempted. The reason 
for this is that two important aspects of scheduling are 
necessarily intertwined. These two aspects are perfor- 
mance and eficiency. Performance is the part of a sys- 
tem’s behavior that encompasses how well the resource 
to be managed is being used to the benefit of all users of 
the system. Efficiency, though, is concerned with the 
added cost (or overhead) associated with the resource 
management facility itself. In terms of these two criteria, 
we may think of desirable system behavior as that which 
has the highest level of performance possible, while in- 
curring the least overhead in doing it. Clearly, the exact 
combination of these two which brings about the most de- 
sirable behavior is dependent on many factors and in many 
ways resembles the space/time tradeoff present in com- 
mon algorithm design. The point to be made here is that 
simultaneous evaluation of efficiency and performance is 
very difficult due to this inherent entanglement. What we 
suggest is a methodology for designing scheduling sys- 
tems in which efficiency and performance are separately 
observable. 

Current and future investigations will involve studies to 
better understand the relationships between performance, 
efficiency, and their components as they effect quantita- 
tive behavior. It is hoped that a much better understanding 
can be gained regarding the costs and benefits of alter- 
native distributed scheduling strategies. 

V. CONCLUSION 

This paper has sought to bring together the ideas and 
work in the area of resource management generated in the 
last 10 to 15 years. The intention has been to provide a 
suitable framework for comparing past work in the area 
of resource management, while providing a tool for clas- 
sifying and discussing future work. This has been done 
through the presentation of common terminology and a 
taxonomy on the mechanisms employed in computer sys- 
tem resource management. While the taxonomy could be 
used to discuss many different types of resource manage- 
ment, the attention of the paper and included examples 
have been on the application of the taxonomy to the pro- 
cessing resource. Finally, recommendations regarding 
possible fruitful areas for future research in the area of 
scheduling in large scale general-purpose distributed 
computer systems have been discussed. 

As is the case in any survey, there are many pieces of 
work to be considered. It is hoped that the examples pre- 
sented fairly represent the true state of research in this 
area, while it is acknowledged that not all such examples 
have been discussed. In addition to the references at the 
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end of this paper, the Appendix contains an annotated 
bibliography for work not explicitly mentioned in the text 
but which have aided in the construction of this taxonomy 
through the support of additional examples. The exclu- 
sion of any particular results has not been intentional nor 
should it be construed as a judgment of the merit of that 
work. Decisions as to which papers to use as examples 
were made purely on the basis of their applicability to the 
context of the discussion in which they appear. 

APPENDIX 
ANNOTATED BIBLIOGRAPHY 

Application of Taxonomy to Examples from Literature 

This Appendix contains references to additional exam- 
ples not included in Section III as well as abbreviated de- 
scriptions of those examples discussed in detail in the text 
of the paper. The purpose is to demonstrate the use of the 
taxonomy of Section II in classifying a large number of 
examples from the literature. 

[l] G.  R. Andrews, D. P. Dobkin, and P. J. Downey, 
“Distributed allocation with pools of servers,” in 
ACM SIGACT-SIGOPS Symp. Principles of Distrib- 
uted Computing, Aug. 1982, pp. 73-83. 

Global, dynamic, distributed (however in a lim- 
ited sense), cooperative, suboptimal, heuristic, bid- 
ding, nonadaptive, dynamic reassignment. 

[2] J. A. Bannister and K. S. Trivedi, “Task allocation 
in fault-tolerant distributed systems,” Acta Inform., 
vol. 20, pp. 261-281, 1983. 

Global, static, suboptimal, approximate, mathe- 
matical programming. 

[3] F. Berman and L. Snyder, “On mapping parallel al- 
gorithms into parallel architectures,” in I984 Int. 
Conf. Parallel Proc., Aug. 1984, pp. 307-309. 

Global, static, optimal, graph theory. 
[4] S. H. Bokhari, “Dual processor scheduling with dy- 

namic reassignment,” IEEE Trans. Software Eng., 
vol. SE-5, no. 4, pp. 326-334, July 1979. 

Global, static, optimal, graph theoretic. 
[5] -, “A shortest tree algorithm for optimal assign- 

ments across space and time in a distributed proces- 
sor system,” IEEE Trans. Software Eng., vol. SE- 
7, no. 6, pp. 335-341, Nov. 1981. 

Global, static, optimal, mathematical program- 
ming, intended for tree-structured applications. 

[6] R. M. Bryant and R. A. Finkel, “A stable distrib- 
uted scheduling algorithm,” in Proc. 2nd Int. Conf 
Dist. Camp., Apr. 1981, pp. 314-323. 

Global, dynamic, physically distributed, cooper- 
ative, suboptimal, heuristic, probabilistic, load-bal- 
ancing . 

[7] T. L. Casavant and J. G. Kuhl, “Design of a 
loosely-coupled distributed multiprocessing net- 
work, ’ ’ in 1984 Int. Conf. Parallel Proc., Aug. 
1984, pp. 42-45. 

Global, dynamic, physically distributed, cooper- 

ative, suboptimal, heuristic, load-balancing, bid- 
ding, dynamic reassignment. 

[8] L. M. Casey, “Decentralized scheduling,” Austra- 
lian Comput. J., vol. 13, pp. 58-63, May 1981. 

Global, dynamic, physically distributed, cooper- 
ative, suboptimal, heuristic, load-balancing. 

[9] T. C. K. Chou and J. A. Abraham, “Load balancing 
in distributed systems,” IEEE Trans. Software Eng., 
vol. SE-8, no. 4, pp. 401-412, July 1982. 

Global, static, optimal, queueing theoretical. 
[lo] T. C. K. Chou and J. A. Abraham, “Load redistri- 

bution under failure in distributed systems,” IEEE 
Trans. Cornput., vol. C-32, no. 9, pp. 799-808, 
Sept. 1983. 

Global, dynamic (but with static parings of sup- 
porting and supported processors),  distributed, co- 
operative, suboptimal, provides 3 separate heuristic 
mechanisms, motivated from fault recovery aspect. 

[ll] Y. C. Chow and W. H. Kohler, “Models for dy- 
namic load balancing in a heterogeneous multiple 
processor system,” IEEE Trans. Comput., vol. C- 
28, no. 5, pp. 354-361, May 1979. 

Global, dynamic, physically distributed, cooper- 
ative, suboptimal, heuristic, load-balancing, (part of 
the heuristic approach is based on results from 
queueing theory). 

[12] W. W. Chu et al., “Task allocation in distributed 
data processing,” Computer, vol. 13, no. 11, pp. 
57-69, Nov. 1980. 

Global, static, optimal, suboptimal, heuristic, 
heuristic approached based on graph theory and 
mathematical programming are discussed. 

[ 131 K. W. Doty , P. L. McEntire, and J. G. O ’Reilly , 
“Task allocation in a distributed computer system,” 
in IEEE InfoCom, 1982, pp. 33-38. 

Global, static, optimal, mathematical program- 
ming (nonlinear spatial dynamic programming). 

[14] K. Efe, “Heuristic models of task assignment 
scheduling in distributed systems,” Computer, vol. 
15, pp. 50-56, June 1982. 

Global, static, suboptimal, heuristic, load-balanc- 
ing. 

[15] J. A. B. Fortes and F. Parisi-Presicce, “Optimal 
linear schedules for the parallel execution of algo- 
rithms, ’ ’ in 1984 Int. Conf. Parallel Proc., Aug. 
1984, pp. 322-329, 

Global, static, optimal, uses results from mathe- 
matical programming for a large class of data-de- 
pendency driven applications. 

[ 161 A. Gabrielian and D. B. Tyler, “Optimal object al- 
location in distributed computer systems,” in Proc. 
4th Int. Conf. Dist. Comp. Systems, May 1984, pp. 
84-95. 

Global, static, optimal, mathematical program- 
ming, uses a heuristic to obtain a solution close to 
optimal, employs backtracking to find optimal one 
from that. 

[17] C. Gao, J. W. S. Liu, and M. Railey, “Load bal- 
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ancing algorithms in homogeneous distributed sys- 
tems,” in 1984 Int. Conf. Parallel Proc., Aug. 
1984, pp. 302-306. 

Global, dynamic, distributed, cooperative, sub- 
optimal, heuristic, probabilistic. 

[18] W. Huen et al., ‘ ‘TECHNEC, A network computer 
for distributed task control,” in Proc. 1st Rocky 
Mountain Symp. Microcomputers, Aug. 1977, pp, 
233-237. 

Global, static, suboptimal, heuristic. 
[19] K. Hwang et al., ‘ ‘A Unix-based local computer 

network with load balancing,” Computer, vol. 15, 
no. 4, pp. 55-65, Apr. 1982. 

Global, dynamic, physically distributed, cooper- 
ative, suboptimal, heuristic, load-balancing. 

[20] D. Klappholz and H. C. Park, ‘ ‘Parallelized process 
scheduling for a tightly-coupled MIMD machine,” 
in 1984 Int. Conf. Parallel Proc., Aug. 1984, pp. 
315-321. 

Global, dynamic, physically distributed, non- 
cooperative. 

[21] C. P. Kruskal and A. Weiss, “Allocating inde- 
pendent subtasks on parallel processors extended ab- 
stract , ’ ’ in 1984 Int. Conf. Parallel Proc., Aug. 
1984, pp. 236-240. 

Global, static, suboptimal, but optimal for a set of 
optimistic assumptions, heuristic, problem stated in 
terms of queuing theory. 

[22] V. M. Lo, “Heuristic algorithms for task assign- 
ment in distributed systems,” in Proc. 4th Int. Con5 
Dist. Comp. Systems, May 1984, pp. 30-39. 

Global, static, suboptimal, approximate, graph 
theoretic. 

PI -3 “Task assignment to minimize completion 
time,” in 5th Int. Conf. Distributed Computing Sys- 
tems, May 1985, pp, 329-336. 

Global, static, optimal, mathematical program- 
ming for some special cases, but in general is sub- 
optimal, heuristic using the LPT algorithm. 

[24] P. Y. R. Ma, E. Y. S. Lee, and J. Tsuchiya, “A 
task allocation model for distributed computing sys- 
tems,” IEEE Trans. Cornput., vol. C-3 1, no. 1, pp. 
41-47, Jan. 1982. 

Global, static, optimal, mathematical program- 
ming (branch and bound). 

[25] S. Majumdar and M. L. Green, “A distributed real 
time resource manager,” in Proc. IEEE Symp. Dis- 
tributed Data Acquisition, Computing and Control, 
1980, pp. 185-193. 

Global, dynamic, distributed, cooperative, sub- 
optimal, heuristic, load balancing, nonadaptive. 

[26] R. Manner, “Hardware task/processor scheduling in 
a polyprocessor environment,” IEEE Trans. Com- 
put., vol. C-33, no. 7, pp. 626-636, July 1984. 

Global, dynamic, distributed control and respon- 
sibility, but centralized information in hardware on 
bus lines. Cooperative, optimal, (priority) load bal- 
ancing . 

[27] L. M. Ni and K. Hwang, “Optimal load balancing 
for a multiple processor system,” in Proc. Int. Conj 
Parallel Proc., 1981, pp. 352-357. 

Global, static, optimal, mathematical program- 
ming. 

[28] L. M. Ni and K. Abani, “Nonpreemptive load bal- 
ancing in a class of local area networks, ” in Proc. 
Comp. Networking Symp., Dec. 1981, pp. 113-118. 

Global, dynamic, distributed, cooperative, opti- 
mal and suboptimal solutions given-mathematical 
programming, and adaptive load balancing, respec- 
tively . 

[29] J. Ousterhout, D. Scelza, and P. Sindhu, “Medusa: 
An experiment in distributed operating system struc- 
ture,” Commun. ACM, vol. 23, no. 2, pp. 92-105, 
Feb. 1980. 

Global, dynamic, physically nondistributed. 
[30] M. L. Powell and B. P. Miller, “Process migration 

in DEMOS/MP,” in Proc. 9th Symp. Operating 
Systems Principles (OS Review), vol. 17, no. 5, pp. 
110-119, Oct. 1983. 

Global, dynamic, distributed, cooperative, sub- 
optimal, heuristic, load balancing but no specific de- 
cision rule given. 

[3 l] C. C. Price and S. Krishnaprasad, “Software allo- 
cation models for distributed computing systems,” 
in Proc. 4th Int. Conf. Dist. Comp. Systems, May 
1984, pp. 40-48. 

Global, static, optimal, mathematical program- 
ming, but also suggest heuristics. 

[32] C. V. Ramamoorthy et al., “Optimal scheduling 
strategies in a multiprocessor system,” IEEE Trans. 
Comput., vol. C-21, no. 2, pp. 137-146, Feb. 1972. 

Global, static, optimal solution presented for 
comparison with the heuristic one also presented. 
Graph theory is employed in the sense that it uses 
task precedence graphs. 

[33] K. Ramamritham and J. A. Stankovic, “Dynamic 
task scheduling in distributed hard real-time sys- 
tems,” in Proc. 4th Int. Conf. Dist. Comp. Systems, 
May 1984, pp. 96-107. 

Global, dynamic, distributed, cooperative, sub- 
optimal, heuristic, bidding, one-time assignments (a 
real time guarantee is applied before migration). 

[34] J. Reif and P. Spirakis, “Real-time resource allo- 
cation in a distributed system,” in ACM SIGACT- 
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